储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 570-582.doi: 10.19799/j.cnki.2095-4239.2024.0774
收稿日期:
2024-08-20
修回日期:
2024-09-02
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
梁君飞,王华
E-mail:S202216028@st.nuc.edu.cn;junfeiliang@buaa.edu.cn;wanghua8651@buaa.edu.cn
作者简介:
王钦(1998—),男,硕士研究生,研究方向为合金型电极材料,E-mail:S202216028@st.nuc.edu.cn;
基金资助:
Qin WANG1(), Yangang ZHANG1, Junfei LIANG1(
), Hua WANG2(
)
Received:
2024-08-20
Revised:
2024-09-02
Online:
2025-02-28
Published:
2025-03-18
Contact:
Junfei LIANG, Hua WANG
E-mail:S202216028@st.nuc.edu.cn;junfeiliang@buaa.edu.cn;wanghua8651@buaa.edu.cn
摘要:
硅基材料因较高的理论比容量被认为是固态电池中最有前景的负极材料之一。然而,在充放电过程中,硅基电极材料和固态电解质容易发生界面失效,破坏了界面处的离子电子传输通路、引起电池内部阻抗增加以及电流密度分布不均匀,最终造成电池容量和循环寿命的衰减,这是设计高比能和长循环硅基固态电池时面临的挑战之一。本文首先从硅基材料的晶体结构、临界直径和电化学烧结方面阐述了界面失效的原因,并介绍了嵌锂数量对纯硅材料电子电导率、离子扩散系数、杨氏模量性能的影响。随后总结了应对固态电池中电极和电解质界面失效问题的多种方案,包括黏结剂、缓冲层的应用、电极材料结构设计以及电极材料和电解质的粒径匹配。此外,文章还强调了循环过程中施加相等且恒定的堆叠压力对电池性能的潜在影响。本文旨在阐明固态电池中硅基材料与电解质界面失效导致的电池容量衰减以及循环寿命下降的科学挑战,并从硅基材料设计、电极材料制备、电极材料和电解质匹配等方面提出了解决这些挑战的策略,为该领域的进一步发展指明了方向。
中图分类号:
王钦, 张艳岗, 梁君飞, 王华. 硅基固态电池的界面失效挑战与应对策略[J]. 储能科学与技术, 2025, 14(2): 570-582.
Qin WANG, Yangang ZHANG, Junfei LIANG, Hua WANG. Challenges and strategies for interface failures in silicon-based solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 570-582.
表1
采用不同策略的硅基固态电池性能统计"
电解质 | 温度/℃ | 堆叠 压力/MPa | 正极/负极(NP比) | 倍率(C) | 保留率(%)/ 循环圈数 | 策略 |
---|---|---|---|---|---|---|
Li6PS5Cl | — | 20 | NCM/μ-Si(1.3) | 0.19/0.09 mA/cm2(充/放) | 83/50 | 电极设计[ |
Li6PS5Cl | 室温 | 50 | NCM/μ-Si(1.1) | 1 | 80/500 | 电极设计[ |
Li6PS5Cl | 室温 | 50 | NCM/Si | 1/3 | 71.5/650 | 涂层材料[ |
Li2.4Zr0.6Lu0.4Cl6 | 室温 | 30 | NCM/Si(1.4) | 0.5 | 80/1500 | 电解质设计[ |
Li6PS5Cl | 55 | — | NCM/LSH46 | 1 | 80/1033 | 电极设计[ |
Li6PS5Cl | 55 | — | LCO/LSH46 | 20 | 72.1/30000 | 电极设计[ |
Li6PS5Cl | 55 | — | LCO/LSH46 | 30 | 82.69/15000 | 电极设计[ |
Li6PS5Cl | 30 | 5 | NCM/Si | 0.2 | 77.8/100 | 循环压力优化[ |
Li6PS5Cl | 室温 | 75 | LCO/LiSi | 5 mA/cm2 | 73.81000 | 负极预锂化[ |
弹性电解质 | 室温 | 0 | LPF/μ-Si | — | 98.3/100 | 电解质设计[ |
Li6PS5Cl | 室温 | 50 | NCM@LBO/Si(1.3) | 0.1 | 58.1/100 | 涂层材料[ |
1 | WANG K, ZHONG X B, SONG Y X, et al. Regeneration of photovoltaic industry silicon waste toward high-performance lithium-ion battery anode[J]. Rare Metals, 2024, 43(10): 4948-4960. DOI: 10.1007/s12598-024-02783-w. |
2 | GUO X D, GUO K X, CHEN S, et al. Effectively coupling of SnSe2 nanosheet with N, Se co-doped carbon nanofibers as self-standing anode for lithium-ion batteries[J]. Nanotechnology, 2024, 35(19): 195401. DOI: 10.1088/1361-6528/ad263c. |
3 | ASHUROV I, AKHUNOV K, ASHUROV K, et al. Utilization of silicon for lithium-ion battery anodes: Unveiling progress, hurdles, and prospects (review)[J]. Applied Solar Energy, 2024, 60(1): 90-126. DOI: 10.3103/S0003701X23601801. |
4 | KAN R Y, XU Y, CHEN R, et al. Thermal effects of solid-state batteries at different temperature: Recent advances and perspectives[J]. Energy Storage Materials, 2024, 68: 103366. DOI: 10.1016/j.ensm.2024.103366. |
5 | SCHMALTZ T, HARTMANN F, WICKE T, et al. A roadmap for solid-state batteries[J]. Advanced Energy Materials, 2023, 13(43): 2301886. DOI: 10.1002/aenm.202301886. |
6 | KALNAUS S, DUDNEY N J, WESTOVER A S, et al. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998. DOI: 10.1126/science.abg5998. |
7 | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8: 230-240. DOI: 10.1038/s41560-023-01208-9. |
8 | CAO D X, SUN X, LI Y J, et al. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes[J]. Advanced Materials, 2022, 34(24): e2200401. DOI: 10.1002/adma.202200401. |
9 | XU H F, YANG S B, LI B. Pressure effects and countermeasures in solid-state batteries: A comprehensive review[J]. Advanced Energy Materials, 2024, 14(16): 2303539. DOI: 10.1002/aenm. 202303539. |
10 | LEE S W, MCDOWELL M T, CHOI J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7): 3034-3039. DOI: 10.1021/nl201787r. |
11 | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. DOI: 10.1021/nn204476h. |
12 | MCDOWELL M T, LEE S W, HARRIS J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2): 758-764. DOI: 10.1021/nl3044508. |
13 | ZHAO M, ZHANG J, COSTA C M, et al. Unveiling challenges and opportunities in silicon-based all-solid-state batteries: Thin-film bonding with mismatch strain[J]. Advanced Materials, 2024, 36(4): e2308590. DOI: 10.1002/adma.202308590. |
14 | FU F J, WANG X X, ZHANG L F, et al. Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes[J]. Advanced Functional Materials, 2023, 33(37): 2303936. DOI: 10.1002/adfm.202303936. |
15 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. DOI: 10.1126/science.abg7217. |
16 | GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: From fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): e2004577. DOI: 10.1002/adma.202004577. |
17 | MAHAJANI V, KORATKAR N. Toward practical alloy anode based solid state batteries[J]. Small, 2023: 2306388. DOI: 10. 1002/smll.202306388. |
18 | WETJEN M, SOLCHENBACH S, PRITZL D, et al. Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(7): A1503-A1514. DOI: 10. 1149/2.1261807jes. |
19 | HAM S Y, SEBTI E, CRONK A, et al. Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries[J]. Nature Communications, 2024, 15(1): 2991. DOI: 10.1038/s41467-024-47352-y. |
20 | HUO H Y, JIANG M, BAI Y, et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries[J]. Nature Materials, 2024, 23(4): 543-551. DOI: 10.1038/s41563-023-01792-x. |
21 | PUTRA R P, MATSUSHITA K, OHNISHI T, et al. Operando nanomechanical mapping of amorphous silicon thin film electrodes in all-solid-state lithium-ion battery configuration during electrochemical lithiation and delithiation[J]. The Journal of Physical Chemistry Letters, 2024, 15(2): 490-498. DOI: 10.1021/acs.jpclett.3c03012. |
22 | LU P S, ZHOU Z M, XIAO Z X, et al. Materials and chemistry design for low-temperature all-solid-state batteries[J]. Joule, 2024, 8(3): 635-657. DOI: 10.1016/j.joule.2024.01.027. |
23 | KHAN K, HANIF M B, XIN H, et al. PEO-based solid composite polymer electrolyte for high capacity retention all-solid-state lithium metal battery[J]. Small, 2024, 20(4): e2305772. DOI: 10. 1002/smll.202305772. |
24 | BOORBOOR AJDARI F, ASGHARI P, MOLAEI AGHDAM A, et al. Silicon solid state battery: The solid-state compatibility, particle size, and carbon compositing for high energy density[J]. Advanced Functional Materials, 2024, 34(30): 2314822. DOI: 10. 1002/adfm.202314822. |
25 | IWASA H, IKEMOTO S, OHASHI F, et al. X-ray diffraction investigation of lithium silicides under high pressure[J]. JJAP Conference Proceedings, 2020, 8: 011302. DOI: 10.56646/jjapcp. 8.0_011302. |
26 | ZENG Z D, LIU N, ZENG Q S, et al. Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries[J]. Journal of Power Sources, 2013, 242: 732-735. DOI: 10.1016/j.jpowsour. 2013.05.121. |
27 | CANGAZ S, HIPPAUF F, REUTER F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): 2001320. DOI: 10.1002/aenm.202001320. |
28 | ZHOU L D, ZUO T T, LI C, et al. Li3- xZrx(Ho/Lu)1- xCl6 solid electrolytes enable ultrahigh-loading solid-state batteries with a prelithiated Si anode[J]. ACS Energy Letters, 2023, 8(7): 3102-3111. DOI: 10.1021/acsenergylett.3c00763. |
29 | YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nature Energy, 2023, 8: 800-813. DOI: 10.1038/s41560-023-01279-8. |
30 | CHEN Y T, JANG J, OH J A S, et al. Enabling uniform and accurate control of cycling pressure for all-solid-state batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304327. DOI: 10. 1002/aenm.202304327. |
31 | PAN H, WANG L, SHI Y, et al. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure[J]. Nature Communications, 2024, 15(1): 2263. DOI: 10. 1038/s41467-024-46472-9. |
32 | OH J, CHOI S H, CHANG B, et al. Elastic binder for high-performance sulfide-based all-solid-state batteries[J]. ACS Energy Letters, 2022, 7(4): 1374-1382. DOI: 10.1021/acsenergylett.2c00461. |
33 | AN S Y, MA Y, PAYANDEH S, et al. Comparative analysis of aqueous and nonaqueous polymer binders for the silicon anode in all-solid-state batteries[J]. Advanced Energy and Sustainability Research, 2023, 4(11): 2300092. DOI: 10.1002/aesr.202300092. |
34 | LI Y X, WU Y J, MA T H, et al. Long-life sulfide all-solid-state battery enabled by substrate-modulated dry-process binder[J]. Advanced Energy Materials, 2022, 12(37): 2201732. DOI: 10. 1002/aenm.202201732. |
35 | MILLS A, KALNAUS S, TSAI W Y, et al. Elucidating polymer binder entanglement in freestanding sulfide solid-state electrolyte membranes[J]. ACS Energy Letters, 2024, 9(6): 2677-2684. DOI: 10.1021/acsenergylett.3c02813. |
36 | ZHANG Y, HULD F, LU S, et al. Revisiting polytetrafluorethylene binder for solvent-free lithium-ion battery anode fabrication[J]. Batteries, 2022, 8(6): 57. DOI: 10.3390/batteries8060057. |
37 | CAO D X, JI T T, SINGH A, et al. Unveiling the mechanical and electrochemical evolution of nanosilicon composite anodes in sulfide-based all-solid-state batteries[J]. Advanced Energy Materials, 2023, 13(14): 2203969. DOI: 10.1002/aenm. 202203969. |
38 | WANG Z L, SHEN X F, CHEN S J, et al. Large-scale fabrication of stable silicon anode in air for sulfide solid state batteries via ionic-electronic dual conductive binder[J]. Advanced Materials, 2024, 36(32): e2405025. DOI: 10.1002/adma.202405025. |
39 | AN W L, GAO B, MEI S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications, 2019, 10(1): 1447. DOI: 10. 1038/s41467-019-09510-5. |
40 | XU D X, ZHAO Y M, CHEN H X, et al. Reduced volume expansion of micron-sized SiOx via closed-nanopore structure constructed by Mg-induced elemental segregation[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401973. DOI: 10.1002/anie.202401973. |
41 | JEONG M G, NAIK K G, ZHENG Y J, et al. operando investigation on the role of densification and chemo-mechanics on solid-state cathodes[J]. Advanced Energy Materials, 2024, 14(23): 2304544. DOI: 10.1002/aenm.202304544. |
42 | WANG Y X, HAO H C, NAIK K G, et al. Mechanical milling-induced microstructure changes in argyrodite LPSCl solid-state electrolyte critically affect electrochemical stability[J]. Advanced Energy Materials, 2024, 14(23): 2304530. DOI: 10.1002/aenm. 202304530. |
43 | SCHLAUTMANN E, WEISS A, MAUS O, et al. Impact of the solid electrolyte particle size distribution in sulfide-based solid-state battery composites[J]. Advanced Energy Materials, 2023, 13(41): 2302309. DOI: 10.1002/aenm.202302309. |
44 | BOTROS M, GONZALEZ-JULIAN J, SCHERER T, et al. Influence of grain size on the electrochemical performance of Li7-3 xLa3Zr2AlxO12 solid electrolyte[J]. Batteries & Supercaps, 2024, 7(11): e202300370. DOI: 10.1002/batt.202300370. |
45 | CHANG S L, WANG Q, WANG A N, et al. Highly efficient ion-transport "polymer-in-ceramic" electrolytes boost stable all-solid-state Li metal batteries[J]. Journal of Colloid and Interface Science, 2024, 671: 477-485. DOI: 10.1016/j.jcis.2024.05.131. |
46 | KIM H S, WATANABE K, MATSUI N, et al. Crack suppression by downsizing sulfide-electrolyte particles for high-current-density operation of metal/alloy anodes[J]. Batteries & Supercaps, 2023, 6(10): e202300306. DOI: 10.1002/batt.202300306. |
47 | GU L H, HAN J J, CHEN M F, et al. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries[J]. Energy Storage Materials, 2022, 52: 547-561. DOI: 10.1016/j.ensm. 2022.08.028. |
48 | SU Y, ZHANG X D, DU C C, et al. An all-solid-state battery based on sulfide and PEO composite electrolyte[J]. Small, 2022, 18(29): e2202069. DOI: 10.1002/smll.202202069. |
49 | ZHANG L C, LIN Y K, PENG X D, et al. A high-capacity polyethylene oxide-based all-solid-state battery using a metal-organic framework hosted silicon anode[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24798-24805. DOI: 10.1021/acsami.2c04487. |
50 | HAN X, XU M, GU L H, et al. Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery[J]. Rare Metals, 2024, 43(3): 1017-1029. DOI: 10.1007/s12598-023-02498-4. |
51 | LIU L, WANG Q H, JIE Z H, et al. Stable interface between anode materials and Li1.3Al0.3Ti1.7(PO4)3-based solid-state electrolyte facilitated by graphene coating[J]. Electrochimica Acta, 2022, 431: 141136. DOI: 10.1016/j.electacta.2022.141136. |
52 | KIM J, KIM C, JANG I, et al. Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries[J]. Journal of Power Sources, 2021, 510: 230425. DOI: 10.1016/j.jpowsour.2021.230425. |
53 | SAKKA Y, YAMASHIGE H, WATANABE A, et al. Pressure dependence on the three-dimensional structure of a composite electrode in an all-solid-state battery[J]. Journal of Materials Chemistry A, 2022, 10(31): 16602-16609. DOI: 10.1039/D2TA02378D. |
54 | SO M, INOUE G, HIRATE R, et al. Effect of mold pressure on compaction and ion conductivity of all-solid-state batteries revealed by the discrete element method[J]. Journal of Power Sources, 2021, 508: 230344. DOI: 10.1016/j.jpowsour. 2021.230344. |
55 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries[J]. Journal of Power Sources, 2020, 473: 228595. DOI: 10.1016/j.jpowsour.2020.228595. |
56 | HAM S Y, YANG H D, NUNEZ-CUACUAS O, et al. Assessing the critical current density of all-solid-state Li metal symmetric and full cells[J]. Energy Storage Materials, 2023, 55: 455-462. DOI:10.1016/j.ensm.2022.12.013. |
[1] | 王薇, 梁惠施, 李棉刚, 周奎, 王薇, 王姿尧, 史梓男. 基于迁移学习的锂电池不可逆析锂监测方法[J]. 储能科学与技术, 2025, (): 1-10. |
[2] | 王泓, 张开悦. 全钒液流电池碳毡电极的热处理活化研究[J]. 储能科学与技术, 2025, 14(2): 488-496. |
[3] | 冀昱辰, 杨卢奕, 林海, 潘锋. 原位表征技术在电池界面演化机制研究中的应用[J]. 储能科学与技术, 2025, 14(2): 740-754. |
[4] | 匡智伟, 张振东, 盛雷, 付林祥. 储能用高容量锂离子电池低温快速加热方法研究[J]. 储能科学与技术, 2025, 14(2): 791-798. |
[5] | 梁振飞, 王兴兴, 胡皓晨, 李艳红, 欧阳博学, 孙晓云, 高瑞茂, 叶骏, 王德仁. 锌溴液流电池电解液与隔膜技术研究进展[J]. 储能科学与技术, 2025, 14(2): 583-600. |
[6] | 李和雨, 洪小波, 陈子涵, 阮殿波. 多孔隔热板对锂离子电池模组热蔓延阻隔效果研究[J]. 储能科学与技术, 2025, 14(2): 479-487. |
[7] | 庞娟, 孙金岭. 能源互联基础上分布式储能系统的应用及经济效益探讨[J]. 储能科学与技术, 2025, 14(2): 868-870. |
[8] | 吴旭志, 郭健. 基于改进灰狼算法优化GPR模型的动力电池RUL预测方法[J]. 储能科学与技术, 2025, 14(2): 728-736. |
[9] | 梁毅, 韦韬, 殷广达, 黄德权. 亲锂Ag-3D-Cu电极的设计及电化学性质[J]. 储能科学与技术, 2025, 14(2): 515-524. |
[10] | 朱鹏杰, 李伟, 张楚, 宋浩, 李贝贝, 刘秀梅, 刘利利. 基于烟气扩散的储能柜内锂电池热失控预警研究[J]. 储能科学与技术, 2025, 14(2): 624-635. |
[11] | 李薛茹, 马哲杰, 李平. 质子交换膜燃料电池阴极催化层微观结构表征研究进展[J]. 储能科学与技术, 2025, 14(2): 812-821. |
[12] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.12.1—2025.1.31)[J]. 储能科学与技术, 2025, (): 1-21. |
[13] | 贺瑞璘, 张通, 吴镓淳, 王朝阳, 邓永红, 张光照, 许晓雄. 骨架型材料与设计在高比能锂电池中的应用研究进展[J]. 储能科学与技术, 2025, (): 1-18. |
[14] | 周洪, 俞海龙, 王丽平, 黄学杰. 基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J]. 储能科学与技术, 2025, 14(1): 406-416. |
[15] | 郝峻丰, 岑官骏, 乔荣涵, 朱璟, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.10.1—2024.11.30)[J]. 储能科学与技术, 2025, 14(1): 388-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||