储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 570-582.doi: 10.19799/j.cnki.2095-4239.2024.0774

• 储能材料与器件 • 上一篇    下一篇

硅基固态电池的界面失效挑战与应对策略

王钦1(), 张艳岗1, 梁君飞1(), 王华2()   

  1. 1.中北大学能源与动力工程学院,山西 太原 030051
    2.北京航空航天大学化学学院,北京 100191
  • 收稿日期:2024-08-20 修回日期:2024-09-02 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 梁君飞,王华 E-mail:S202216028@st.nuc.edu.cn;junfeiliang@buaa.edu.cn;wanghua8651@buaa.edu.cn
  • 作者简介:王钦(1998—),男,硕士研究生,研究方向为合金型电极材料,E-mail:S202216028@st.nuc.edu.cn
  • 基金资助:
    国家重点研发计划政府间国际科技创新合作(2022YFE0126300);山西省科技成果转化引导专项(202304021301032);山西省基础研究计划(202403021211075)

Challenges and strategies for interface failures in silicon-based solid-state batteries

Qin WANG1(), Yangang ZHANG1, Junfei LIANG1(), Hua WANG2()   

  1. 1.School of Energy and Power Engineering, North University of China, Taiyuan 030051, Shanxi, China
    2.School of Chemistry, Beihang University, Beijing 100191, China
  • Received:2024-08-20 Revised:2024-09-02 Online:2025-02-28 Published:2025-03-18
  • Contact: Junfei LIANG, Hua WANG E-mail:S202216028@st.nuc.edu.cn;junfeiliang@buaa.edu.cn;wanghua8651@buaa.edu.cn

摘要:

硅基材料因较高的理论比容量被认为是固态电池中最有前景的负极材料之一。然而,在充放电过程中,硅基电极材料和固态电解质容易发生界面失效,破坏了界面处的离子电子传输通路、引起电池内部阻抗增加以及电流密度分布不均匀,最终造成电池容量和循环寿命的衰减,这是设计高比能和长循环硅基固态电池时面临的挑战之一。本文首先从硅基材料的晶体结构、临界直径和电化学烧结方面阐述了界面失效的原因,并介绍了嵌锂数量对纯硅材料电子电导率、离子扩散系数、杨氏模量性能的影响。随后总结了应对固态电池中电极和电解质界面失效问题的多种方案,包括黏结剂、缓冲层的应用、电极材料结构设计以及电极材料和电解质的粒径匹配。此外,文章还强调了循环过程中施加相等且恒定的堆叠压力对电池性能的潜在影响。本文旨在阐明固态电池中硅基材料与电解质界面失效导致的电池容量衰减以及循环寿命下降的科学挑战,并从硅基材料设计、电极材料制备、电极材料和电解质匹配等方面提出了解决这些挑战的策略,为该领域的进一步发展指明了方向。

关键词: 硅基固态电池, 界面失效, 应力错配, 堆叠压力

Abstract:

Silicon-based materials are among the most promising anode materials for solid-state batteries owing to their high specific capacity. However, interface failures between silicon-based electrode materials and solid-state electrolytes disrupt ion and electron transport pathways, leading to increased internal impedance, uneven current-density distribution, and eventual degradation of battery capacity and cycle life. This issue presents a major challenge in designing high-energy-density and long-cycle silicon-based solid-state batteries. First, we evaluate the reasons for interface failures between silicon-based materials and solid-state electrolytes, focusing on crystal structures, critical dimensions, and electrochemical sintering. We also discuss the impact of lithium concentration on the electronic conductivity, ionic diffusion coefficient, and Young's modulus of pure silicon materials. Furthermore, we summarize various strategies to address the interface failures, including the application of binders, buffer layers, electrode-material structure design, and particle-size matching between electrode materials and electrolytes. Additionally, we emphasize the potential influence of applying equal and constant stacking pressure on battery performance during the cycling process. This study aims to elucidate the scientific challenges associated with silicon-based material and electrolyte-interface failures in solid-state batteries, resulting in capacity decay and decreased cycle life. Further, this work proposes strategies to address these challenges considering silicon-based material design, electrode material preparation, and electrode-electrolyte matching, thereby guiding further advancements in this field.

Key words: Si-based solid-state battery, interface failure, mismatch strain, stack pressure

中图分类号: