• XXXX •
收稿日期:
2024-08-07
修回日期:
2024-08-12
通讯作者:
林海,潘锋
E-mail:linhai@pkusz.edu.cn;panfeng@pkusz.edu.cn
作者简介:
冀昱辰
Yuchen JI, Luyi YANG, Hai LIN(), Feng PAN()
Received:
2024-08-07
Revised:
2024-08-12
Contact:
Hai LIN, Feng PAN
E-mail:linhai@pkusz.edu.cn;panfeng@pkusz.edu.cn
摘要:
在二次电池中,电极/电解液界面的演化行为对电池的性能和稳定性起着至关重要的作用。本文从工作机理出发,详细综述了几种具有代表性的先进原位表征技术,包括原位原子力显微镜、原位三维激光共聚焦显微镜、电化学石英晶体天平、电化学微分质谱、原位拉曼光谱、原位傅里叶变换红外光谱。并且基于二次电池界面演化体系,本文将其划分为从液相到固相的电极/电解液界面中间相演化、沉积型金属负极的电沉积过程与金属-气体电池的三相界面演化,以及固相到液相的固体组分电化学分解与固体组分溶解,并列举了多种原位先进表征手段在这些复杂体系研究中联合应用的实例,展示了多模态界面原位表征技术在不同尺度下的立体分析能力,这些原位表征技术的联用不仅能够提供对电极/电解液界面在实际电池运行条件下动态演化过程的深入理解,还可以揭示影响电池性能和稳定性的关键因素。本文还讨论了当前研究中面临的挑战和取得的进展,并提出了未来研究的展望。对原位界面表征技术的应用与发展将有助于深入理解电池界面演化机制,提升电池性能和稳定性,推动新型电池技术的进步。
中图分类号:
冀昱辰, 杨卢奕, 林海, 潘锋. 原位表征技术在电池界面演化机制研究中的应用[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2024.0743.
Yuchen JI, Luyi YANG, Hai LIN, Feng PAN. Applications of In-Situ Characterization Techniques in Studying Battery Interfacial Evolution Mechanisms[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0743.
1 | LU J, CHEN Z, PAN F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochem. Energy Rev., 2018, 1(1): 35-53. |
2 | CHEN S, ZHENG G, YAO X, et al. Constructing Matching Cathode–Anode Interphases with Improved Chemo-mechanical Stability for High-Energy Batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. |
3 | LIU T, YU L, LIU J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries[J]. Nat. Energy, 2021, 6(3): 277-286. |
4 | JI Y, QIU J, ZHAO W, et al. In situ probing the origin of interfacial instability of Na metal anode[J]. Chem, 2023, 9(10): 2943-2955. |
5 | LI J, JI Y, SONG H, et al. Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries[J]. Nano-Micro Letters, 2022, 14(1): 191. |
6 | XUE S, CHEN S, FU Y, et al. Revealing the Role of Active Fillers in Li-ion Conduction of Composite Solid Electrolytes[J]. Small, 2023: e2305326. |
7 | YANG K, YANG L, WANG Z, et al. Constructing a Highly Efficient Aligned Conductive Network to Facilitate Depolarized High‐Areal‐Capacity Electrodes in Li‐Ion Batteries[J]. Adv. Energy Mater., 2021, 11(22): 2100601. |
8 | HUANG W, LI J, ZHAO Q, et al. Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability[J]. Adv. Mater., 2024: 2405519. |
9 | YAO X, CHEN S, WANG C, et al. Interface Welding via Thermal Pulse Sintering to Enable 4.6 V Solid‐State Batteries[J]. Adv. Energy Mater., 2023: 2303422. |
10 | HUANG Y, JI Y, ZHENG G, et al. Tailored Interphases Construction for Enhanced Si Anode and Ni-Rich Cathode Performance in Lithium-Ion Batteries[J]. CCS Chem., 2024: https://doi.org/10.31635/ccschem.024.202404120. |
11 | WANG Z, TAN R, WANG H, et al. A Metal–Organic‐Framework‐Based Electrolyte with Nanowetted Interfaces for High‐Energy‐Density Solid‐State Lithium Battery[J]. Adv. Mater., 2017, 30(2): 1704436. |
12 | JI Y, YIN Z-W, YANG Z, et al. From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance[J]. Chem. Soc. Rev., 2021, 50(19): 10743-10763. |
13 | QIAN G, LI Y, CHEN H, et al. Revealing the aging process of solid electrolyte interphase on SiOx anode[J]. Nat. Commun., 2023, 14(1): 6048. |
14 | LIU T, LIN L, BI X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2019, 14(1): 50-56. |
15 | JIA L-L, JI Y-C, YANG K, et al. Interface Reconstruction Study by Functional Scanning Probe Microscope in Li-ion Battery Research[J]. Chinese J. Struct. Chem., 2020, 39(2): 200─205. |
16 | CHEN Y-J, ZHANG M-J, YUAN S, et al. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy[J]. Nano Energy, 2017, 36: 303-312. |
17 | LIU P, YANG L, XIAO B, et al. Revealing Lithium Battery Gas Generation for Safer Practical Applications[J]. Adv. Funct. Mater., 2022, 32(47): 2208586. |
18 | LI S, ZHANG W, WU Q, et al. Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(35): 14935-14941. |
19 | LIU M, YAO L, JI Y, et al. Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries[J]. Nano Letters, 2023, 23(2): 541-549. |
20 | BRUCKENSTEIN S, RAOGADDE R. Use of a porous electrode for in-situ mass spectrometric determination of volatile electrode reaction products[J]. J. Am. Chem. Soc., 1971, 93(3): 793-794. |
21 | ZHANG B, WANG L, WANG X, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Mater., 2022, 53: 492-504. |
22 | WANG Y H, ZHENG S, YANG W M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water[J]. Nature, 2021, 600(7887): 81-85. |
23 | GU Y, TANG S, YI J, et al. Nanostructure-based plasmon-enhanced raman spectroscopic strategies for characterization of the solid–electrolyte interphase: Opportunities and challenges[J]. The Journal of Physical Chemistry C, 2023, 127(28): 13466-13477. |
24 | ZHANG Y, KATAYAMA Y, TATARA R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J]. Energy Environ. Sci., 2020, 13(1): 183-199. |
25 | HU J, JI Y, ZHENG G, et al. Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration[J]. Aggregate, 2022, 3(1): e153. |
26 | XIANG J, YANG L, YUAN L, et al. Alkali-Metal Anodes: From Lab to Market[J]. Joule, 2019, 3(10): 2334-2363. |
27 | CAO X, XU Y, ZOU L, et al. Stability of solid electrolyte interphases and calendar life of lithium metal batteries[J]. Energy Environ. Sci., 2023, 16(4): 1548-1559. |
28 | FENG G, JIA H, SHI Y, et al. Imaging solid–electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. |
29 | WANG Y C, JI Y C, YIN Z W, et al. Tuning Rate-Limiting Factors for Graphite Anodes in Fast-Charging Li-Ion Batteries[J]. Adv. Funct. Mater., 2024: 2401515. |
30 | TU S, ZHANG B, ZHANG Y, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase[J]. Nat. Energy, 2023, 8(12): 1365-1374. |
31 | BAO C, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Adv. Funct. Mater., 2020, 30(52): 2004891. |
32 | WU H, JIA H, WANG C, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Adv. Energy Mater., 2020, 11(5): 2003092. |
33 | ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
34 | ZHANG J-G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chem. Rev., 2020, 120(24): 13312-13348. |
35 | WANG Z, SUN Z, LI J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chem. Soc. Rev., 2021, 50(5): 3178-3210. |
36 | LIU X R, DENG X, LIU R R, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties[J]. ACS Appl Mater Interfaces, 2014, 6(22): 20317-23. |
37 | TAN S, SHADIKE Z, LI J, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nat. Energy, 2022, 7(6): 484-494. |
38 | WAN H, XU J, WANG C. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nature Reviews Chemistry, 2023. |
39 | CHEN Y, YU Q, XU G, et al. In Situ Observation of the Insulator-To-Metal Transition and Nonequilibrium Phase Transition for Li(1-x)CoO(2) Films with Preferred (003) Orientation Nanorods[J]. ACS Appl Mater Interfaces, 2019, 11(36): 33043-33053. |
40 | GUO C, ZHANG F, HAN X, et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery[J]. Adv. Mater., 2023, 35(33): e2302325. |
41 | XING Y, YANG Y, LI D, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J]. Adv. Mater., 2018, 30(51): e1803124. |
42 | WANG M, YANG K, JI Y, et al. Developing highly reversible Li–CO2 batteries: from on-chip exploration to practical application[J]. Energy Environ. Sci., 2023, 16(9): 3960-3967. |
43 | MA L, YU T, TZOGANAKIS E, et al. Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O2 Batteries: Recent Progress and Perspective[J]. Adv. Energy Mater., 2018, 8(22): 1800348. |
44 | YANG K, LI Y, JIA L, et al. Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na–O2 batteries[J]. Journal of Energy Chemistry, 2021, 56: 438-443. |
45 | LU B, CHEN B, WANG D, et al. Engineering the interfacial orientation of MoS2/Co9S8 bidirectional catalysts with highly exposed active sites for reversible Li-CO2 batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(6): e2216933120. |
46 | HUANG W, QIU J, JI Y, et al. Exploiting Cation Intercalating Chemistry to Catalyze Conversion-Type Reactions in Batteries[J]. ACS Nano, 2023, 17(6): 5570-5578. |
47 | SHAO Q, ZHU S, CHEN J. A review on lithium-sulfur batteries: Challenge, development, and perspective[J]. Nano Research, 2023, 16(6): 8097-8138. |
48 | CHEN S, SONG Z, JI Y, et al. Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries via a Multifunctional Conductive Binder[J]. Small Methods, 2021, 5(10): 2100839. |
49 | HUANG J, BOLES S T, TARASCON J-M. Sensing as the key to battery lifetime and sustainability[J]. Nat. Sustain., 2022, 5(3): 194-204. |
50 | HAN G, YAN J, GUO Z, et al. A review on various optical fibre sensing methods for batteries[J]. Renewable Sustainable Energy Rev., 2021, 150. |
51 | DAY R P, XIA J, PETIBON R, et al. Differential Thermal Analysis of Li-Ion Cells as an Effective Probe of Liquid Electrolyte Evolution during Aging[J]. Journal of The Electrochemical Society, 2015, 162(14): A2577-A2581. |
52 | ZHANG W, WENG M, ZHANG M, et al. Revealing Morphology Evolution of Lithium Dendrites by Large‐Scale Simulation Based on Machine Learning Force Field[J]. Adv. Energy Mater., 2022, 13(4): 2202892. |
[1] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[2] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[3] | 张晓平, 容远嘉, 王潜雁, 高梦林, 廖亚玲, 吴民生, 庄鑫鑫, 黄中昱, 万美君, 陈维荣. 原位表征技术在锂氧气电池中的研究进展[J]. 储能科学与技术, 2024, 13(4): 1225-1238. |
[4] | 许旭鹏, 许旭明, 陈虹艳, 梁雅儒, 雷维新, 马增胜, 陈国新, 柯培玲. 原位表征技术在锂硫电池机理研究中的应用[J]. 储能科学与技术, 2024, 13(4): 1239-1252. |
[5] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[6] | 陈淑媛, 程晨, 夏啸, 鞠焕鑫, 张亮. 高比能二次电池正极材料的X射线谱学研究进展[J]. 储能科学与技术, 2024, 13(1): 113-129. |
[7] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
[8] | 张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984. |
[9] | 郝奕帆, 祝夏雨, 王静, 邱景义, 明海, 方振华. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. |
[10] | 姚逸鸣, 栾伟玲, 陈莹, 孙敏. 基于光学显微镜的锂离子电池材料老化衰减原位研究进展[J]. 储能科学与技术, 2023, 12(3): 777-791. |
[11] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
[12] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
[13] | 高金辉, 陈韵竹, 杨洋, 孟繁慧, 徐宏, 王莉, 周江, 何向明. 锂离子电池参比电极研究进展[J]. 储能科学与技术, 2021, 10(3): 987-994. |
[14] | 涂健, 徐雄文, 胡海波, 聂阳, 曾涛, 孙秋实, 成浩, 谢健, 赵新兵. 凝胶型锂离子电池的制作及电化学和安全性能[J]. 储能科学与技术, 2021, 10(3): 1025-1031. |
[15] | 陈丽萍, 冯金奎, 田园, 安永灵, 董广俊. 基于文献计量学的锂二次电池研究知识图谱分析[J]. 储能科学与技术, 2021, 10(3): 1196-1205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||