储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 777-791.doi: 10.19799/j.cnki.2095-4239.2022.0684

• 储能材料与器件 • 上一篇    下一篇

基于光学显微镜的锂离子电池材料老化衰减原位研究进展

姚逸鸣(), 栾伟玲(), 陈莹, 孙敏   

  1. 华东理工大学机械与动力工程学院,石化行业动力电池系统与安全重点实验室,上海 200237
  • 收稿日期:2022-11-21 修回日期:2022-11-30 出版日期:2023-03-05 发布日期:2023-04-14
  • 通讯作者: 栾伟玲 E-mail:ecustyaoyiming@163.com;luan@ecust.edu.cn
  • 作者简介:姚逸鸣(1997—),男,博士研究生,研究方向为锂离子电池材料原位表征方法,E-mail:ecustyaoyiming@163.com
  • 基金资助:
    国家自然科学基金(52205153);中国博士后科学基金资助项目(2022M721138)

Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy

Yiming YAO(), Weiling LUAN(), Ying CHEN, Min SUN   

  1. CPCIF Key Laboratory of Power Battery Systems and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2022-11-21 Revised:2022-11-30 Online:2023-03-05 Published:2023-04-14
  • Contact: Weiling LUAN E-mail:ecustyaoyiming@163.com;luan@ecust.edu.cn

摘要:

先进锂离子电池的发展需要更高性能的电池材料或更优化的电池结构,深入了解电池材料的老化衰减机理是提高电池性能的前提。原位光学显微镜方法具有操作简便、原位反应池模拟环境真实,以及从介观到宏观的大范围尺度进行表征的特点,是目前最适合开展原位研究的表征方法。本文综述了原位光学显微镜方法在锂离子电池材料老化衰减方面的研究进展,介绍了原位光学显微镜方法中原位反应池的典型结构,阐述了该方法应用于锂离子浓度及其分布、析锂、电池材料体积膨胀与开裂和应力应变演化等方面的研究进展。最后,提出了原位光学显微镜方法在光学显微镜分辨率、原位反应池功能性、多表征方法联用以及先进图像处理和分析方法等方面的未来关注方向。

关键词: 锂离子电池, 老化衰减, 光学显微镜, 原位表征

Abstract:

Developing advanced lithium-ion batteries requires high-performance battery materials or optimized battery structures. An in-depth understanding of the aging degradation mechanism of battery materials is a prerequisite for improving battery performance. The in-situ optical microscopy method has advantages of convenient operation, a realistic simulation environment in in-situ reaction cells, and characterization from mesoscopic to macroscopic scales. This paper reviews the recent progress in the in-situ study of the aging degradation of lithium-ion battery materials via optical microscopy. Furthermore, typical structures of in-situ optical microscopy reaction cells are summarized. Then, several applications are reviewed, including lithium-ion concentration and its distribution, lithium plating, volume expansion and cracking of battery materials, and stress-strain evolution. Finally, future directions on optical microscope resolution, the functionality of in-situ reaction cells, the combined use of different characterization methods, and advanced image processing and analysis methods are proposed.

Key words: lithium-ion battery, aging degradation, optical microscopy, in-situ characterization

中图分类号: