储能科学与技术

• 储能XXXX •    

基于迁移学习的锂电池不可逆析锂监测方法

王薇1(), 梁惠施2(), 李棉刚2, 周奎2, 王薇2, 王姿尧2, 史梓男2   

  1. 1.清华大学深圳国际研究生院,广东 深圳 518055
    2.清华四川能源互联网研究院,四川 成都 610213
  • 收稿日期:2025-01-14 修回日期:2025-02-17 出版日期:2025-03-05
  • 通讯作者: 梁惠施 E-mail:wang-w22@mails.tsinghua.edu.cn;lianghuishi@tsinghua-eiri.org
  • 作者简介:王薇(2000—),女,硕士研究生,电池安全预警,E-mail:wang-w22@mails.tsinghua.edu.cn
  • 基金资助:
    内蒙古自治区“揭榜挂帅”项目(2024JBGS0053)

The Monitoring Method of Irreversible Lithium Plating in Lithium Batteries Based on Transfer Learning

Wei WANG1(), Huishi LIANG2(), Miangang LI2, Kui ZHOU2, Wei WANG2, Ziyao WANG2, Zinan SHI2   

  1. 1.Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, China
    2.Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, Sichuan, China
  • Received:2025-01-14 Revised:2025-02-17 Online:2025-03-05
  • Contact: Huishi LIANG E-mail:wang-w22@mails.tsinghua.edu.cn;lianghuishi@tsinghua-eiri.org

摘要:

析锂是引发储能锂离子电池内短路故障的重要原因之一,对析锂过程的在线监测是当前保障电池安全的主流研究方向。然而在工程应用中,现有方法局限于对可逆析锂的监测,并且由于缺乏电池的析锂数据,基于机器学习的在线监测算法存在模型训练上的困难。为解决这些问题,本工作提出了一种基于无监督领域自适应迁移学习的不可逆析锂监测方法。首先通过基于锂离子电池电化学-热-老化耦合模型的仿真和锂离子电池低温析锂老化实验生成不可逆析锂监测模型的源域数据和目标域数据,然后从放电曲线中提取析锂数据特征,在无监督领域自适应迁移学习的框架下构建了基于多层感知机的不可逆析锂监测模型,最后实现了将电池不可逆析锂监测模型从源域数据到目标域数据的迁移。结果表明,对于仿真数据,算法对是否发生不可逆析锂的判断准确率超过99%,对于实验数据,算法对电池不可逆析理的定性判断与实际情况相符,说明本工作提出的方法能够有效监测电池的不可逆析锂,为储能锂离子电池不可逆析锂的在线监测方法提供了新思路。

关键词: 锂离子电池, 析锂监测, 伪二维模型, 多层感知机, 迁移学习

Abstract:

Lithium plating is one of the main causes of internal short-circuit failures in energy storage lithium-ion batteries, and online monitoring of the lithium plating process is a key research direction for ensuring battery safety. However, in engineering applications, existing methods are limited to monitoring reversible lithium plating, and machine learning-based online monitoring algorithms face challenges in model training due to the lack of lithium plating data from actual batteries. To address these issues, this work proposes a monitoring method for irreversible lithium plating based on unsupervised domain adaptive transfer learning. The source and target domain data for the irreversible lithium plating monitoring model are generated through simulation using an electrochemical-thermal-aging model and low-temperature lithium plating aging experiments. Features related to lithium plating are extracted from discharge curves, and an irreversible lithium plating monitoring model based on multilayer perceptron is developed within the framework of unsupervised domain adaptive transfer learning. This allows for the transfer of the irreversible lithium plating monitoring model from the source domain data to the target domain data. The results show that for simulated data, the algorithm achieves an accuracy rate exceeding 99% in determining the occurrence of irreversible lithium plating. For experimental data, the qualitative judgements of the algorithm on the irreversible lithium plating are consistent with the actual conditions. This demonstrates that the proposed method can effectively monitor irreversible lithium plating in batteries and provides a new approach for the online monitoring of irreversible lithium plating in energy storage lithium-ion batteries.

Key words: Lithium-ion batteries, Lithium plating monitoring, Pseudo two-dimensional model, Multilayer perceptron, Transfer learning

中图分类号: