储能科学与技术

• XXXX •    

骨架型材料与设计在高比能锂电池中的应用研究进展

贺瑞璘1(), 张通1, 吴镓淳1, 王朝阳3, 邓永红1, 张光照1(), 许晓雄2()   

  1. 1.南方科技大学材料科学与工程系,广东 深圳 518055
    2.南方科技大学创新创业学院,广东 深圳 518055
    3.华南理工大学材料学院,广东 广州 510641
  • 收稿日期:2024-12-26 修回日期:2025-02-24 出版日期:2025-02-25
  • 通讯作者: 张光照,许晓雄 E-mail:12331186@mail.sustech.edu.cn;zhanggz@sustech.edu.cn;xuxx@sustech.edu.cn
  • 作者简介:贺瑞璘(1998—),男,博士研究生在读,高能量密度锂电池研究,E-mail:12331186@mail.sustech.edu.cn
  • 基金资助:
    广东省电驱动力能源材料重点实验室(南方科技大学)(2018B030322001);氟氧共配位聚合物固态电解质的原位构筑及其耐高电压与快离子传输机制研究(2230051017)

The design of scaffold materials and their application in lithium batteries

Ruilin He1(), Tong Zhang1, Jiachun Wu1, Chaoyang Wang3, Yonghong Deng1, Guangzhao Zhang1(), Xiaoxiong Xu2()   

  1. 1.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    2.School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055
    3.Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
  • Received:2024-12-26 Revised:2025-02-24 Online:2025-02-25
  • Contact: Guangzhao Zhang, Xiaoxiong Xu E-mail:12331186@mail.sustech.edu.cn;zhanggz@sustech.edu.cn;xuxx@sustech.edu.cn

摘要:

以石墨为负极的锂离子电池能量密度逐渐接近其理论极限,但仍然难以满足人们对更高能量密度锂电池的追求。具有更高比容量的硅基负极锂离子电池、锂硫电池和锂金属电能够实现能量密度的飞跃,但其循环稳定性和安全性问题亟需解决。高比容量电极材料的使用必然带来更多的体积效应,这给电池制备及的稳定运行带来极大挑战。骨架材料作为一种三维材料具有良好可调性、优异的机械强度和多孔性为缓解高比容电极材料的体积效应提供无线可能。本文介绍了骨架材料的具体分类,分析了高比容量电池不同组件所面临的挑战,综述了骨架材料在锂电池正极、隔膜、电解质、负极等领域的具体应用,深入探讨了骨架材料在电池不同构件中应用的原理及利弊,剖析了骨架材料在锂电池领域进一步发展所面临的关键问题与严峻挑战,并对骨架材料未来的研究方向进行了展望,旨在为推动骨架材料促进电池技术的不断进步提供有益的参考与借鉴。

关键词: 骨架材料, 分子骨架材料, 多孔膜材料, 高比能, 锂电池

Abstract:

The energy density of lithium-ion batteries with graphite as the anode is gradually approaching its theoretical limit, yet it still falls short of meeting the pursuit of lithium batteries with higher energy density. Lithium-ion batteries with silicon-based anodes, lithium-sulfur batteries, and lithium-metal batteries, which possess higher specific capacities, can achieve a leap in energy density. However, their cycle stability and safety issues urgently need to be addressed. The use of electrode materials with high specific capacities inevitably leads to more volume effects, posing significant challenges to battery preparation and stable operation. As a type of three-dimensional material, scaffold materials offer excellent tunability, mechanical strength, and porosity, providing endless possibilities for mitigating the volume effects of high-specific-capacity electrode materials. This review introduces the specific classifications of scaffold materials, analyzes the challenges faced by different components of high-specific-capacity batteries, summarizes the specific applications of scaffold materials in the cathode, separator, electrolyte, and anode of lithium batteries, delves into the principles, advantages, and disadvantages of scaffold materials in different battery components, dissects the key issues and severe challenges faced by the further development of scaffold materials in the field of lithium batteries, and looks forward to the future research directions of scaffold materials. We hope this review also provide a useful reference for promoting the continuous advancement of battery technology through scaffold materials.

Key words: Scaffold materials, Molecular scaffold materials, Porous membrane, High-energy, Lithium batteries

中图分类号: