• XXXX •
贺瑞璘1(), 张通1, 吴镓淳1, 王朝阳3, 邓永红1, 张光照1(
), 许晓雄2(
)
收稿日期:
2024-12-26
修回日期:
2025-02-24
出版日期:
2025-02-25
通讯作者:
张光照,许晓雄
E-mail:12331186@mail.sustech.edu.cn;zhanggz@sustech.edu.cn;xuxx@sustech.edu.cn
作者简介:
贺瑞璘(1998—),男,博士研究生在读,高能量密度锂电池研究,E-mail:12331186@mail.sustech.edu.cn;
基金资助:
Ruilin He1(), Tong Zhang1, Jiachun Wu1, Chaoyang Wang3, Yonghong Deng1, Guangzhao Zhang1(
), Xiaoxiong Xu2(
)
Received:
2024-12-26
Revised:
2025-02-24
Online:
2025-02-25
Contact:
Guangzhao Zhang, Xiaoxiong Xu
E-mail:12331186@mail.sustech.edu.cn;zhanggz@sustech.edu.cn;xuxx@sustech.edu.cn
摘要:
以石墨为负极的锂离子电池能量密度逐渐接近其理论极限,但仍然难以满足人们对更高能量密度锂电池的追求。具有更高比容量的硅基负极锂离子电池、锂硫电池和锂金属电能够实现能量密度的飞跃,但其循环稳定性和安全性问题亟需解决。高比容量电极材料的使用必然带来更多的体积效应,这给电池制备及的稳定运行带来极大挑战。骨架材料作为一种三维材料具有良好可调性、优异的机械强度和多孔性为缓解高比容电极材料的体积效应提供无线可能。本文介绍了骨架材料的具体分类,分析了高比容量电池不同组件所面临的挑战,综述了骨架材料在锂电池正极、隔膜、电解质、负极等领域的具体应用,深入探讨了骨架材料在电池不同构件中应用的原理及利弊,剖析了骨架材料在锂电池领域进一步发展所面临的关键问题与严峻挑战,并对骨架材料未来的研究方向进行了展望,旨在为推动骨架材料促进电池技术的不断进步提供有益的参考与借鉴。
中图分类号:
贺瑞璘, 张通, 吴镓淳, 王朝阳, 邓永红, 张光照, 许晓雄. 骨架型材料与设计在高比能锂电池中的应用研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2024.1235.
Ruilin He, Tong Zhang, Jiachun Wu, Chaoyang Wang, Yonghong Deng, Guangzhao Zhang, Xiaoxiong Xu. The design of scaffold materials and their application in lithium batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.1235.
1 | M. Li, et al. 30 Years of Lithium-Ion Batteries[J]. Advanced Materials, 2018: e1800561. DOI:10.1002/adma.201800561. |
2 | T. Kim, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7: 2942-2964. DOI:10.1039/c8ta10513h. |
3 | Y. Lei, et al. Surface Modification of Li-Rich Mn-Based Layered Oxide Cathodes: Challenges, Materials, Methods, and Characterization[J]. Advanced Energy Materials, 2020, 10: 2002506. DOI:10.1002/aenm.202002506. |
4 | J.W. Choi and D. Aurbach. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013. DOI:10.1038/natrevmats.2016.13. |
5 | J. Liu, et al. Coordination compounds in lithium storage and lithium-ion transport[J]. Chemical Society Reviews, 2020. 49: 1624-1642. DOI:10.1039/c9cs00881k. |
6 | J. Sun, et al. Recent Advances in Covalent Organic Framework Electrode Materials for Alkali Metal-Ion Batteries[J]. Ccs Chemistry, 2023. 5: 1259-1276. DOI:10.31635/ccschem.023.202302808. |
7 | C. Liu, et al. Metal-organic frameworks and their composites for advanced lithium-ion batteries: Synthesis, progress and prospects[J]. Journal of Energy Chemistry, 2024, 89: 449-470. DOI:10.1016/j.jechem.2023.10.006. |
8 | R. C. K. Reddy, et al. Metal-Organic Frameworks and Their Derivatives as Cathodes for Lithium-Ion Battery Applications: A Review[J]. Electrochemical Energy Reviews, 2022, 5: 312-347. DOI:10.1007/s41918-021-00101-x. |
9 | X. Li, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2[J]. Journal of Power Sources, 2006, 160: 542-547. DOI:10.1016/j.jpowsour.2006.01.015. |
10 | G. Li, et al. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal-Organic Material[J]. Inorganic Chemistry, 2016, 55: 4935-4940. DOI:10.1021/acs.inorgchem.6b00450. |
11 | H. Li, et al. Large π-Conjugated Porous Frameworks as Cathodes for Sodium-Ion Batteries[J]. The Journal of Physical Chemistry Letters, 2018, 9: 3205-3211. DOI:10.1021/acs.jpclett.8b01285. |
12 | N. Li, et al. Specific K+ Binding Sites as CO2 Traps in a Porous MOF for Enhanced CO2 Selective Sorption[J]. Small, 2019, 15: 1900426. DOI:10.1002/smll.201900426. |
13 | Q. Zhao, Z. Zhu, J. Chen. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries[J]. Advanced Materials, 2017, 29: 1607007. DOI:10.1002/adma.201607007. |
14 | G. Férey, et al. Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Properties[J]. Angewandte Chemie International Edition, 2007, 46: 3259-3263. DOI:10.1002/anie.200605163. |
15 | X. Wu, et al. Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2016, 8: 23706-23712. DOI:10.1021/acsami.6b06880. |
16 | D. Asakura, et al. Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability[J]. Journal of the American Chemical Society, 2013, 135: 2793-2799. DOI:10.1021/ja312160v. |
17 | C. Combelles, M.-L. Doublet. Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework[J]. Ionics, 2008, 14: 279-283. DOI:10.1007/s11581-007-0179-7. |
18 | C. Combelles, et al. FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): A DFT+U study[J]. Journal of Power Sources, 2011, 196: 3426-3432. DOI:10.1016/j.jpowsour.2010.08.065. |
19 | Z. Zhang, H. Yoshikawa, K. Awaga. Monitoring the Solid-State Electrochemistry of Cu(2,7-AQDC) (AQDC=Anthraquinone Dicarboxylate) in a Lithium Battery: Coexistence of Metal and Ligand Redox Activities in a Metal-Organic Framework[J]. Journal of the American Chemical Society, 2014, 136: 16112-16115. DOI:10.1021/ja508197w. |
20 | Z. Peng, et al. Triphenylamine-Based Metal–Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability[J]. ACS Applied Materials & Interfaces, 2016, 8: 14578-14585. DOI:10.1021/acsami.6b03418. |
21 | C.-H. Chang, et al. Elucidating metal and ligand redox activities of a copper-benzoquinoid coordination polymer as the cathode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7: 23770-23774. DOI:10.1039/C9TA05244E. |
22 | D.-H. Yang, et al. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4: 18621-18627. DOI:10.1039/C6TA07606H. |
23 | X. Yang, et al. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity[J]. Angewandte Chemie International Edition, 2020, 59: 20385-20389. DOI:10.1002/anie.202008619. |
24 | S. Xu, et al. A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries[J]. Angewandte Chemie International Edition, 2019, 58: 849-853. DOI:10.1002/anie.201812685. |
25 | M. Wu, et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries[J]. Nano Energy, 2020, 70: 104498. DOI:10.1016/j.nanoen.2020.104498. |
26 | S. Li, et al. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating[J]. Journal of Materials Chemistry A, 2016, 4: 5823-5827. DOI:10.1039/C5TA10773C. |
27 | Q.-Q. Qiao, et al. To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4: 4440-4447. DOI:10.1039/C6TA00882H. |
28 | B.-J. Chae, et al. Metal-Organic Framework as a Multifunctional Additive for Selectively Trapping Transition-Metal Components in Lithium-Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 8547-8553. DOI:10.1021/acssuschemeng.8b00867. |
29 | Y. Ding, et al. Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue[J]. Journal of Alloys and Compounds, 2019, 774: 451-460. DOI:10.1016/j.jallcom.2018.09.286. |
30 | S.E. Jerng, et al. Pyrazine-Linked 2D Covalent Organic Frameworks as Coating Material for High-Nickel Layered Oxide Cathodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12: 10597-10606. DOI:10.1021/acsami.0c00643. |
31 | Z. Xiao, et al. Sandwich-Type NbS2@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries[J]. ACS Nano, 2017, 11: 8488-8498. DOI:10.1021/acsnano.7b04442. |
32 | Z. Sun, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8: 14627. DOI:10.1038/ncomms14627. |
33 | K. Mi, et al. Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for Lithium-Sulfur Batteries[J]. Advanced Functional Materials, 2017, 27: 1604265. DOI:10.1002/adfm.201604265. |
34 | Q. Pang, L. F. Nazar. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption[J]. ACS Nano, 2016, 10: 4111-4118. DOI:10.1021/acsnano.5b07347. |
35 | Z. Li, J. Zhang, X. W. Lou. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angewandte Chemie International Edition, 2015, 54: 12886-12890. DOI:10.1002/anie.201506972. |
36 | Q. Pang, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759. DOI:10.1038/ncomms5759. |
37 | X. Ji, et al. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8: 500-506. DOI:10.1038/NMAT2460 |
38 | T. Zhou, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017, 10: 1694-1703. DOI:10.1039/C7EE01430A. |
39 | R. Fang, et al. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 10: 56-61. DOI:10.1016/j.ensm.2017.08.005. |
40 | Q. Jin, et al. The Failure Mechanism of Lithium-Sulfur Batteries under Lean-Ether-Electrolyte Conditions[J]. Energy Storage Materials, 2021, 38: 255-261. DOI:10.1016/j.ensm.2021.03.014. |
41 | B. He, et al. Rationally Design a Sulfur Cathode with Solid-Phase Conversion Mechanism for High Cycle-Stable Li-S Batteries[J]. Advanced Energy Materials, 2021, 11: 2003690. DOI:10.1002/aenm.202003690. |
42 | G.-P. Hao, et al. Thermal Exfoliation of Layered Metal-Organic Frameworks into Ultrahydrophilic Graphene Stacks and Their Applications in Li-S Batteries[J]. Advanced Materials, 2017, 29: 1702829. DOI:10.1002/adma.201702829. |
43 | H. Liao, et al. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries[J]. J. Mater. Chem. A, 2014, 2: 8854-8858. DOI:10.1039/C4TA00523F. |
44 | Z. A. Ghazi, et al. Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries[J]. Advanced Energy Materials, 2016, 6: 1601250. DOI:10.1002/aenm.201601250. |
45 | X. Huang, et al. Functionalized separator for next-generation batteries[J]. Materials Today, 2020, 41: 143-155. DOI:10.1016/j.mattod.2020.07.015. |
46 | S. Bai, et al. Metal–organic framework-based separator for lithium–sulfur batteries[J]. Nature Energy, 2016, 1: 16094. DOI:10.1038/NENERGY.2016.94. |
47 | L. Zuo, et al. Upgrading the Separators Integrated with Desolvation and Selective Deposition toward the Stable Lithium Metal Batteries[J]. Adv Mater, 2024, 36: e2311529. DOI:10.1002/adma.202311529. |
48 | Z. Chang, et al. An improved 9micron thick separator for a 350Wh/kg lithium metal rechargeable pouch cell[J]. Nature Communications, 2022, 13: 6788. DOI:10.1038/s41467-022-34584-z. |
49 | Z. Chang, et al. A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery[J]. Joule, 2020, 4: 1-14. DOI:10.1016/j.joule.2020.06.011 |
50 | R. Razaq, et al. Synergistic Effect of Bimetallic MOF Modified Separator for Long Cycle Life Lithium-Sulfur Batteries[J]. Advanced Energy Materials, 2023, 14: 2302897. DOI:10.1002/aenm.202302897. |
51 | Z. Hao, et al. Functional Separators Regulating Ion Transport Enabled by Metal-Organic Frameworks for Dendrite-Free Lithium Metal Anodes[J]. Advanced Functional Materials, 2021, 31: 2102938. DOI:10.1002/adfm.202102938. |
52 | J. Wang, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14: 705-741. DOI:10.1038/s41565-019-0465-3. |
53 | Q. Kang, et al. Engineering the Structural Uniformity of Gel Polymer Electrolytes via Pattern-Guided Alignment for Durable, Safe Solid-State Lithium Metal Batteries[J]. Advanced Materials, 2023, 35: 2303460. DOI:10.1002/adma.202303460. |
54 | P. Wang, et al. Electrospinning Fiber Membrane-Derived Gel Polymer Electrolytes with High Mechanical Strength and Low Swelling Effect for High-Safety Lithium Metal Batteries[J] Advanced Functional Materials, 2024: 2413544. DOI:10.1002/adfm.202413544. |
55 | Z. Wang, et al. Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithium-Ion Batteries[J]. Advanced Functional Materials, 2023, 33: 2212806. DOI:10.1002/adfm.202212806. |
56 | Z. Zhang, et al. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nature Communications, 2022, 13, 1510. DOI:10.1038/s41467-022-29118-6. |
57 | S. Bai, et al. High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte[J]. Joule, 2018, 2: 2117-2132. DOI:10.1016/j.joule.2018.07.010. |
58 | Y. Ouyang, et al. Bilayer Zwitterionic Metal-Organic Framework for Selective All-Solid-State Superionic Conduction in Lithium Metal Batteries[J]. Advanced Materials, 2023, 35: e2304685. DOI:10.1002/adma.202304685. |
59 | T. Liu, et al., Fabrication of Scalable Covalent Organic Framework Membrane-based Electrolytes for Solid-State Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2024: e202411535. DOI:10.1002/anie.202411535. |
60 | C. Niu, S. Zhao, Y. Xu. In Situ Gelled Covalent Organic Frameworks Electrolyte with Long-Range Interconnected Skeletons for Superior Ionic Conductivity. Journal of the American Chemical Society, 2024, 146: 3114-3124. DOI:10.1021/jacs.3c10312. |
61 | G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike. Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte[J]. Journal of the American Chemical Society, 2019, 141: 1227-1234. DOI:10.1021/jacs.8b07670. |
62 | K. Jeong, S. Park, G. Y. Jung, S. H. Kim, Y.-H. Lee, S. K. Kwak, S.-Y. Lee. Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks[J]. Journal of the American Chemical Society, 2019, 141: 5880-5885. DOI:10.1021/jacs.9b00543. |
63 | Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian, Z. Dang, M. Gu, R. Wang, R. Tao, Y. Lu, Y. Wang, Y. Kim. Highly Conductive Imidazolate Covalent Organic Frameworks with Ether Chains as Solid Electrolytes for Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2024, 63: e202402202. DOI:10.1002/anie.202402202. |
64 | C. Luo, et al. Roll-To-Roll Fabrication of Zero-Volume-Expansion Lithium-Composite Anodes to Realize High-Energy-Density Flexible and Stable Lithium-Metal Batteries[J]. Advanced Materials, 2022, 34: e2205677. DOI:10.1002/adma.202205677. |
65 | S.-S. Chi, et al. Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition[J]. Nano Letter, 2020, 20: 2724-2732. DOI:10.1021/acs.nanolett.0c00352. |
66 | C. Wei, et al. Double-layered skeleton of Li alloy anchored on 3D metal foam enabling ultralong lifespan of Li anode under high rate[J]. Chinese Chemical Letters, 2024, 35: 109330. DOI:10.1016/j.cclet.2023.109330. |
67 | P. Qing, et al. Interpenetrating LiB/Li3BN2 phases enabling stable composite lithium metal anode[J]. Science Bulletin, 2024, 69: 2842-2852. DOI:10.1016/j.scib.2024.07.021. |
68 | N. Liu, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature nanotechnology, 2014, 9: 187-192. DOI: 10.1038/nnano.2014.6. |
69 | D. Wang, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. DOI: 10.1016/j.ensm.2019.07.045. |
70 | Y. Lee, et al. Stress Relief Principle of Micron-Sized Anodes with Large Volume Variation for Practical High-Energy Lithium-Ion Batteries[J], Advanced Functional Materials, DOI: 10.1002/adfm.202004841. |
71 | D. Li, et al. Electrically active/inert dual-function architecture enabled by screen printing grid‐like SiO2 on Cu foil for ultra-long life lithium metal anodes[J]. EcoMat, 2024, 6: e12478. DOI:10.1002/eom2.12478. |
72 | L. Liu, et al. Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes[J]. Joule, 2017, 1: 563-575. DOI:10.1016/j.joule.2017.06.004. |
73 | X. Zhang, et al. A Low-Fermi-Level Current Collector Enables Anode-Free Lithium Metal Batteries with Long Cycle Life[J]. Matter, 2024, 7: 583-602. DOI:S2590-2385(23)00579-9. |
74 | H. Kwon, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature communications, 2024, 12: 5537. DOI:10.1038/s41467-021-25848-1. |
[1] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[2] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[3] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[4] | 刘莹, 孙丙香, 赵鑫泽, 张珺玮. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J]. 储能科学与技术, 2024, 13(9): 3030-3041. |
[5] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244. |
[6] | 杨凯悦, 谢欣兵, 杜晓钟. 基于离散元法的锂电池极片辊压过程探究[J]. 储能科学与技术, 2024, 13(8): 2570-2579. |
[7] | 陈峥, 杨博, 赵志刚, 申江卫, 肖仁鑫, 夏雪磊. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. |
[8] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[9] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[10] | 王宇豪, 李志勇, 郭新. 聚合物基电解质在低温固态锂电池中的应用与挑战[J]. 储能科学与技术, 2024, 13(7): 2243-2258. |
[11] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[12] | 李臣, 张会林, 张建平. 基于核函数和超参数优化的退役锂电池健康状态估计[J]. 储能科学与技术, 2024, 13(6): 2010-2021. |
[13] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
[14] | 甄箫斐, 王贝贝, 张小虎, 孙一铭, 曹文炅, 董缇. 锂电池储能系统热失控气体生成及扩散规律研究[J]. 储能科学与技术, 2024, 13(6): 1986-1994. |
[15] | 刘宝泉, 曹小雨. 锂电池热失控早期典型气体精准检测方法[J]. 储能科学与技术, 2024, 13(6): 1995-2009. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||