1 |
YAMAMOTO O, TAKEDA Y, KANNO R, et al. Amorphous chromium oxide; A new lithium battery cathode[J]. Journal of Power Sources, 1987, 20(1/2): 151-156. DOI: 10.1016/0378-7753(87)80105-2.
|
2 |
滕久康, 王庆杰, 张亮, 等. 热处理时间对锂电池正极材料Cr8O21的影响[J]. 电化学, 2021, 27(6): 689-697. DOI: 10.13208/j.electrochem.210121.
|
|
TENG J K, WANG Q J, ZHANG L, et al. Influence of heat treatment time on cathode material Cr8O21 for lithium battery[J]. Journal of Electrochemistry, 2021, 27(6): 689-697. DOI: 10.13208/j.electrochem.210121.
|
3 |
LIU J Y, WANG Z X, LI H, et al. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2675-2678. DOI: 10.1016/j.ssi.2006.05.017.
|
4 |
XIAO Y K, JIAN J H, FU A, et al. Substantially promoted energy density of Li||CFx primary battery enabled by Li+-DMP coordinated structure[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6217-6229. DOI: 10.1021/acssuschemeng.1c08707.
|
5 |
杨睿, 李惠, 孟庆飞, 等. PC基电解液对Li/CrOx一次电池高倍率性能的影响[J]. 物理化学学报, 2024, 40(9): 68-74.
|
|
YANG R, LI H, MENG Q F, et al. Influence of PC-based electrolyte on high-rate performance in Li/CrOx primary battery[J]. Acta Physico-Chimica Sinica, 2024, 40(9): 68-74.
|
6 |
FANG Z, YANG Y, ZHENG T L, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483. DOI: 10.1016/j.ensm.2021.08.002.
|
7 |
CHANG Y L, WANG M, WANG S P, et al. Ultralong storage life of Li/MnO2 primary batteries using MnO2-(CFx)n with C—F semi-ionic bond as cathode materials[J]. Electrochimica Acta, 2019, 320: 134618. DOI: 10.1016/j.electacta.2019.134618.
|
8 |
IGNATOVA A A, YARMOLENKO O V, TULIBAEVA G Z, et al. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx-systems at temperatures up to -50 ℃[J]. Journal of Power Sources, 2016, 309: 116-121. DOI: 10.1016/j.jpowsour.2016.01.075.
|
9 |
YAAKOV D, GOFER Y, AURBACH D, et al. On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range[J]. Journal of the Electrochemical Society, 2010, 157(12): A1383. DOI: 10.1149/1.3507259.
|
10 |
YANG C C, JIANG J R, KARUPPIAH C, et al. LATP ionic conductor and in situ graphene hybrid-layer coating on LiFePO4 cathode material at different temperatures[J]. Journal of Alloys and Compounds, 2018, 765: 800-811. DOI: 10.1016/j.jallcom.2018.06.289.
|
11 |
NIE Y, XIAO W, MIAO C, et al. Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries[J]. Electrochimica Acta, 2020, 353: 136477. DOI: 10.1016/j.electacta.2020.136477.
|
12 |
YANG Y, YANG W H, YANG H J, et al. Electrolyte design principles for low-temperature lithium-ion batteries[J]. eScience, 2023, 3(6): 100170. DOI: 10.1016/j.esci.2023.100170.
|
13 |
BI K, ZHAO S X, HUANG C, et al. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O[J]. Journal of Power Sources, 2018, 389: 240-248. DOI: 10.1016/j.jpowsour.2018.03.071.
|
14 |
孟庆飞, 杨睿, 金成龙, 等. 铬氧化物作为高容量锂电池正极材料的制备及其性能研究[J]. 储能科学与技术, 2023, 12(10): 3049-3055. DOI: 10.19799/j.cnki.2095-4239.2023.0396.
|
|
MENG Q F, YANG R, JIN C L, et al. Preparation and performance of high-capacity Cr8O21 as a cathode material for lithium batteries[J]. Energy Storage Science and Technology, 2023, 12(10): 3049-3055. DOI: 10.19799/j.cnki.2095-4239.2023.0396.
|
15 |
WANG Q D, YAO Z P, ZHAO C L, et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries[J]. Nature Communications, 2020, 11(1): 4188. DOI: 10.1038/s41467-020-17976-x.
|
16 |
VALIYAVEETTIL-SOBHANRAJ S, GŁUCHOWSKI P, LÓPEZ-ARANGUREN P, et al. High-pressure low-temperature densification of NASICON-based LATP electrolytes for solid-state lithium batteries[J]. Materialia, 2024, 33: 101999. DOI: 10.1016/j.mtla. 2023.101999.
|
17 |
WAETZIG K, ROST A, HEUBNER C, et al. Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity[J]. Journal of Alloys and Compounds, 2020, 818: 153237. DOI: 10.1016/j.jallcom.2019.153237.
|
18 |
CHANG Z, QIAO Y, DENG H, et al. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery[J]. Joule, 2020, 4(8): 1776-1789. DOI: 10.1016/j.joule.2020.06.011.
|
19 |
FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. DOI: 10.1038/s41560-019-0474-3.
|
20 |
LIU Y Y, XU X Y, SADD M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Advanced Science, 2021, 8(5): 2003301. DOI: 10.1002/advs.202003301.
|
21 |
NOERSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in the exchange current for hydrogen evolution[J]. ChemInform, 2005, 36(24): DOI: 10.1002/chin.200524023.
|