1 |
王贝, 李宾宾, 孙广星, 等. 新型储能技术与产业发展研究[J]. 能源与节能, 2023(11): 8-13. DOI: 10.16643/j.cnki.14-1360/td.2023.11.053.
|
|
WANG B, LI B B, SUN G X, et al. Technologies and industrial development of new-type energy storage[J]. Energy and Energy Conservation, 2023(11): 8-13. DOI: 10.16643/j.cnki.14-1360/td.2023.11.053.
|
2 |
李建林, 邸文峰, 李雅欣, 等. 长时储能技术及典型案例分析[J]. 热力发电, 2023, 52(11): 85-94. DOI: 10.19666/j.rlfd.202301003.
|
|
LI J L, DI W F, LI Y X, et al. Analysis of long-term energy storage technologies and typical case studies[J]. Thermal Power Generation, 2023, 52(11): 85-94. DOI: 10.19666/j.rlfd.202301003.
|
3 |
胡磊, 高莉, 焉晓明, 等. 全钒液流电池膜离子选择性传导通道构建的研究进展[J]. 化工进展, 2020, 39(6): 2079-2092. DOI: 10.16085/j.issn.1000-6613.2019-2111.
|
|
HU L, GAO L, YAN X M, et al. Progress in construction of ion-selective transport channels in membranes for vanadium flow batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2079-2092. DOI: 10.16085/j.issn.1000-6613.2019-2111.
|
4 |
严川伟. 大规模长时储能与全钒液流电池产业发展[J]. 太阳能, 2022(5): 14-22. DOI: 10.19911/j.1003-0417.tyn20220404.01.
|
|
YAN C W. Large energy storage and vanadium flow battery industrialization[J]. Solar Energy, 2022(5): 14-22. DOI: 10.19911/j.1003-0417.tyn20220404.01.
|
5 |
YE J Y, ZHAO X L, MA Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10(22): 1904041. DOI: 10.1002/aenm.201904041.
|
6 |
XIA Y F, YU H L, YUAN C Y, et al. Crosslinked sulfonated poly (arylene ether sulfone)/sulfonated poly (vinyl alcohol) membrane formed by in situ casting and reaction for vanadium redox flow battery application[J]. Chemical Engineering Journal, 2021, 425: 131448. DOI: 10.1016/j.cej.2021.131448.
|
7 |
白恩瑞, 谢小银, 朱昊天, 等. 全钒液流电池隔膜Nafion与SPEEK改性研究进展[J]. 化工矿物与加工, 2024, 53(1): 60-68. DOI: 10.16283/j.cnki.hgkwyjg.2024.01.008.
|
|
BAI E R, XIE X Y, ZHU H T, et al. Research progress on Nafion and SPEEK modification of all vanadium redox flow battery separator[J]. Industrial Minerals & Processing, 2024, 53(1): 60-68. DOI: 10.16283/j.cnki.hgkwyjg.2024.01.008.
|
8 |
ZHANG D H, YU W J, ZHANG Y, et al. Reconstructing proton channels via Zr-MOFs realizes highly ion-selective and proton-conductive SPEEK-based hybrid membrane for vanadium flow battery[J]. Journal of Energy Chemistry, 2022, 75: 448-456. DOI: 10.1016/j.jechem.2022.08.043.
|
9 |
WANG Y X, GENG K, TAN Q, et al. Highly ion selective proton exchange membrane based on sulfonated polybenzimidazoles for iron-chromium redox flow battery[J]. ACS Applied Energy Materials, 2022, 5(12): 15918-15927. DOI: 10.1021/acsaem.2c03471.
|
10 |
CHE X F, ZHAO H, REN X R, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery[J]. Journal of Membrane Science, 2020, 611: 118359. DOI: 10.1016/j.memsci.2020.118359.
|
11 |
ZHOU S Y, SUN Y X, XUE B X, et al. Controlled superacid-catalyzed self-cross-linked polymer of intrinsic microporosity for high-performance CO2 separation[J]. Macromolecules, 2020, 53(18): 7988-7996. DOI: 10.1021/acs.macromol.0c01590.
|