储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1026-1039.doi: 10.19799/j.cnki.2095-4239.2024.1177
收稿日期:
2024-12-16
修回日期:
2025-02-15
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
徐林
E-mail:1783713015@qq.com;linxu@whut.edu.cn
作者简介:
肖子信(2001—),男,硕士研究生,研究方向为高性能固态电池,包括聚合物/复合固态电解质的合成与设计、固态电池界面问题等。E-mail:1783713015@qq.com;
基金资助:
Zixin XIAO(), Hong ZHANG, Lin XU(
)
Received:
2024-12-16
Revised:
2025-02-15
Online:
2025-03-28
Published:
2025-04-28
Contact:
Lin XU
E-mail:1783713015@qq.com;linxu@whut.edu.cn
摘要:
固态电解质是下一代固态锂电池的关键组成部分,因此开发高性能固态电解质成为发展高安全性和高能量密度锂电池最重要的一环。然而,固态电解质中存在的离子输运和电极-电解质界面问题严重阻碍了其发展。在聚合物基体中加入无机填料制备复合固态电解质被认为是当前最具前景的方案。纳米线具有纳米级直径、大比表面积和优异的长径比等特点,可保持载流子连续传输,因此被广泛应用于固态电解质中,以促进锂离子的输运和增强电极-电解质之间的界面接触和稳定性,从而提高固态电池的循环性能和安全性。本文全面总结了用于固态电解质的纳米线材料的研究进展,并从降低聚合物基体的玻璃化转变温度和结晶度、促进锂盐的解离、限制阴离子的运动、减弱锂离子与聚合物链段之间的相互作用、形成新的锂离子输运路径、增强电极-电解质界面接触、提高电极-电解质界面稳定性几个方面详细介绍了纳米线调控离子输运和电极-电解质界面的机制。最后,总结并展望了基于纳米线固态电池的现有挑战和未来发展前景。本文旨在提供对纳米线调控固态电池离子输运与界面机制的全面认识,有望促进纳米线在固态电池中应用的发展。
中图分类号:
肖子信, 张泓, 徐林. 纳米线调控固态电池离子输运与界面[J]. 储能科学与技术, 2025, 14(3): 1026-1039.
Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039.
1 | GREEN M A, BREMNER S P. Energy conversion approaches and materials for high-efficiency photovoltaics[J]. Nature Materials, 2016, 16(1): 23-34. DOI:10.1038/nmat4676. |
2 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22. DOI:10.1038/nmat4834. |
3 | BATES A M, PREGER Y, TORRES-CASTRO L, et al. Are solid-state batteries safer than lithium-ion batteries?[J]. Joule, 2022, 6(4): 742-755. DOI:10.1016/j.joule.2022.02.007. |
4 | YANG M, CHEN L Q, LI H, et al. Air/water stability problems and solutions for lithium batteries[J]. Energy Material Advances, 2022, 2022: 9842651. DOI:10.34133/2022/9842651. |
5 | CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. DOI:10.1016/j.jechem.2020.10.017. |
6 | XU J, XIANG S, YI C Q, et al. Green production of planar aligned dense 2D nano-oxides on CNT paper by ultrafast laser-induced high-pressure photochemistry for stable high-rate LIB anodes[J]. Energy Material Advances, 2023, 4: 12. DOI:10.34133/energymatadv. 0013. |
7 | WANG S, FANG R Y, LI Y T, et al. Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes[J]. Journal of Materiomics, 2021, 7(2): 209-218. DOI:10.1016/j.jmat. 2020.09.003. |
8 | CHEN J, WU J W, WANG X D, et al. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries[J]. Energy Storage Materials, 2021, 35: 70-87. DOI:10.1016/j.ensm.2020.11.017. |
9 | TUFAIL M K, ZHAI P B, JIA M Y, et al. Design of solid electrolytes with fast ion transport: Computation-driven and practical approaches[J]. Energy Material Advances, 2023, 4: 15. DOI:10.34133/energymatadv.0015. |
10 | YAN J Q, HUANG H, TONG J F, et al. Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization[J]. Interdisciplinary Materials, 2022, 1(3): 330-353. DOI:10.1002/idm2.12043. |
11 | WANG F, LIAO X B, WANG H Y, et al. Bioinspired mechanically interlocking holey graphene@SiO2 anode[J]. Interdisciplinary Materials, 2022, 1(4): 517-525. DOI:10.1002/idm2.12032. |
12 | HOCHBAUM A I, YANG P D. Semiconductor nanowires for energy conversion[J]. Chemical Reviews, 2010, 110(1): 527-546. DOI:10.1021/cr900075v. |
13 | CHEN S, YU C, WEI C C, et al. Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 Solid electrolytes[J]. Energy Material Advances, 2023, 4: 19. DOI:10.34133/energymatadv.0019. |
14 | LIANG J W, LI X N, WANG C H, et al. Current status and future directions in environmental stability of sulfide solid-state electrolytes for all-solid-state batteries[J]. Energy Material Advances, 2023, 4: 21. DOI:10.34133/energymatadv.0021. |
15 | GUO R Q, ZHANG K, ZHAO W B, et al. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries[J]. Energy Material Advances, 2023, 4: 22. DOI:10.34133/energymatadv.0022. |
16 | WANG Z F, ZHANG Y S, ZHANG P H, et al. Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte[J]. eScience, 2022, 2(3): 311-318. DOI:10.1016/j.esci.2022.03.004. |
17 | SUN C W, LIU J, GONG Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. DOI:10.1016/j.nanoen.2017.01.028. |
18 | WANG H P, LIU J D, HE J, et al. Pseudo-concentrated electrolytes for lithium metal batteries[J]. eScience, 2022, 2(5): 557-565. DOI:10.1016/j.esci.2022.06.005. |
19 | CAPUANO F, CROCE F, SCROSATI B. Composite polymer electrolytes[J]. Journal of the Electrochemical Society, 138(7): 1918-1922. DOI:10.1149/1.2085900. |
20 | DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85. DOI:10.1021/jacs.7b10864. |
21 | HUANG Y H. The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarity[J]. Interdisciplinary Materials, 2022, 1(3): 323-329. DOI:10.1002/idm2.12048. |
22 | WANG G X, LIANG Y H, LIU H, et al. Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries[J]. Interdisciplinary Materials, 2022, 1(3): 434-444. DOI:10.1002/idm2.12045. |
23 | HU P, ZHU T, WANG X P, et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery[J]. Nano Letters, 2018, 18(3): 1758-1763. DOI:10.1021/acs.nanolett.7b04889. |
24 | WANG X Y, WANG X Y, HUANG W G, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources, 2005, 140(1): 211-215. DOI:10.1016/j.jpowsour.2004.07.033. |
25 | YANG M, YOU H P, LIU K, et al. Low-temperature coprecipitation synthesis and luminescent properties of LaPO4: Ln3+ (Ln3+ = Ce3+, Tb3+) nanowires and LaPO4: Ce3+, Tb3+/LaPO4 core/shell nanowires[J]. Inorganic Chemistry, 2010, 49(11): 4996-5002. DOI:10.1021/ic100099w. |
26 | VIVEKCHAND S R C, GUNDIAH G, GOVINDARAJ A, et al. A new method for the preparation of metal nanowires by the nebulized spray pyrolysis of precursors[J]. Advanced Materials, 2004, 16(20): 1842-1845. DOI:10.1002/adma.200400430. |
27 | REN W H, ZHENG Z P, LUO Y Z, et al. An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries[J]. Journal of Materials Chemistry A, 2015, 3(39): 19850-19856. DOI:10.1039/c5ta04643b. |
28 | HSU P C, KONG D S, WANG S, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes[J]. Journal of the American Chemical Society, 2014, 136(30): 10593-10596. DOI:10.1021/ja505741e. |
29 | XIAO X L, YANG L M, ZHAO H, et al. Facile synthesis of LiCoO2 nanowires with high electrochemical performance[J]. Nano Research, 2012, 5(1): 27-32. DOI:10.1007/s12274-011-0181-2. |
30 | FU Q G, LI H J, SHI X H, et al. Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst[J]. Materials Chemistry and Physics, 2006, 100(1): 108-111. DOI:10.1016/j.matchemphys.2005.12.014. |
31 | XUE C S, LI H, ZHUANG H Z, et al. Synthesis of GaN nanowires with tantalum catalyst by magnetron sputtering[J]. Rare Metal Materials and Engineering, 2009, 38(7): 1129-1131. DOI:10.1016/S1875-5372(10)60041-0. |
32 | ZHOU G M, XU L, HU G W, et al. Nanowires for electrochemical energy storage[J]. Chemical Reviews, 2019, 119(20): 11042-11109. DOI:10.1021/acs.chemrev.9b00326. |
33 | MEKUYE B, ABERA B. Nanomaterials: An overview of synthesis, classification, characterization, and applications[J]. Nano Select, 2023, 4(8): 486-501. DOI:10.1002/nano.202300038. |
34 | TIAN B Z, ZHENG X L, KEMPA T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889. DOI:10.1038/nature06181. |
35 | BAN C M, WHITTINGHAM M S. Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1721-1724. DOI:10.1016/j.ssi.2008.01.037. |
36 | SHEN X, ZHANG X Q, DING F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect[J]. Energy Material Advances, 2021, 2021: 1205324. DOI:10.34133/2021/1205324. |
37 | MENG X B, LAU K C, ZHOU H, et al. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes[J]. Energy Material Advances, 2021, 2021: 2021/9786201. DOI:10.34133/2021/9786201. |
38 | DENG N P, LUO S B, ZHANG L G, et al. Synergistically enhanced roles based on 1D ceramic nanowire and 3D nanostructured polymer frameworks for composite electrolytes[J]. Journal of Energy Storage, 2024, 75: 109578. DOI:10.1016/j.est.2023.109578. |
39 | LIU S L, LIU W Y, BA D L, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries[J]. Advanced Materials, 2023, 35(2): e2110423. DOI:10.1002/adma.202110423. |
40 | ZHAO Y C, ZHENG Y, CAI S J, et al. Li0.35La0.55TiO3 nanofibers filled poly (ethylene carbonate) composite electrolyte with enhanced ion conduction and electrochemical stability[J]. Thin Solid Films, 2021, 734: 138835. DOI:10.1016/j.tsf.2021.138835. |
41 | ZHANG H T, JIA A L, WANG Y C, et al. Perovskite CsPbI3 nanowire-reinforced PEO electrolytes toward high-rate all-solid-state lithium-metal battery[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(41): 14986-14996. DOI:10.1021/acssuschemeng.3c03565. |
42 | ZHANG Z, YINGHUANG, ZHANG G Z, et al. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 631-641. DOI:10.1016/j.ensm.2021.06.030. |
43 | CHIANG C Y, JAIPAL REDDY M, CHU P P. Nano-tube TiO2 composite PVdF/LiPF6 solid membranes[J]. Solid State Ionics, 2004, 175(1/2/3/4): 631-635. DOI:10.1016/j.ssi.2003.12.039. |
44 | LIU W, LIN D C, SUN J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano, 2016, 10(12): 11407-11413. DOI:10.1021/acsnano.6b06797. |
45 | XI C P, CUI X C, ZHANG R, et al. Utilizing an oxygen-rich interface by hydroxyapatite to regulate the linear diffusion for the stable solid-state electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33392-33399. DOI:10.1021/acsami. 2c09207. |
46 | LIN Y, WANG X M, LIU J, et al. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2017, 31: 478-485. DOI:10.1016/j.nanoen. 2016.11.045. |
47 | LUN P Q, CHEN Z L, ZHANG Z B, et al. Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries[J]. RSC Advances, 2018, 8(60): 34232-34240. DOI:10.1039/c8ra06856a. |
48 | HU X K, CHENG Y, DONG G Y, et al. Cation framework nanowires enabling composite solid-state electrolyte with anion exchange platform for rapid Li+ conduction[J]. Advanced Functional Materials, 2024, 34(32): 2316018. DOI:10.1002/adfm.202316018. |
49 | FEI F, ZHANG H, DENG J H, et al. Hydrogen bonding induced confinement effect between ultrafine nanowires and polymer chains for low-energy-barrier ion transport in composite electrolytes[J]. ACS Applied Materials & Interfaces, 2023, 15(25): 30170-30178. DOI:10.1021/acsami.3c03771. |
50 | DA X Y, CHEN J, QIN Y Y, et al. CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries[J]. Advanced Energy Materials, 2024, 14(11): 2303527. DOI:10.1002/aenm. 202303527. |
51 | LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. DOI:10.1021/acs.nanolett.5b00600. |
52 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5): 17035. DOI:10.1038/nenergy.2017.35. |
53 | PENG J Y, LU D W, WU S Q, et al. Lithium superionic conductive nanofiber-reinforcing high-performance polymer electrolytes for solid-state batteries[J]. Journal of the American Chemical Society, 2024, 146(17): 11897-11905. DOI:10.1021/jacs.4c00882. |
54 | CHENG Y, LIU X W, GUO Y Q, et al. Monodispersed sub-1 nm inorganic cluster chains in polymers for solid electrolytes with enhanced Li-ion transport[J]. Advanced Materials, 2023, 35(47): e2303226. DOI:10.1002/adma.202303226. |
55 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. DOI:10.1038/s41565-023-01341-2. |
56 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. DOI:10.1038/s41563-019-0431-3. |
57 | ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. DOI:10.1016/j.joule.2019.03.019. |
58 | SHEN C L, YAN M Y, LIAO X B, et al. Nanotrench superfilling facilitates embedded lithium anode for high-areal-capacity solid-state batteries[J]. ACS Nano, 2024, 18(6): 5068-5078. DOI:10.1021/acsnano.3c11724. |
59 | WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. DOI:10.1002/adfm.201805301. |
60 | LIU Q, WANG L, HE X M. Toward practical solid-state polymer lithium batteries by in situ polymerization process: A review[J]. Advanced Energy Materials, 2023, 13(30): 2300798. DOI:10.1002/aenm.202300798. |
61 | XIAO G Y, XU H, BAI C, et al. Progress and perspectives of in situ polymerization method for lithium-based batteries[J]. Interdisciplinary Materials, 2023, 2(4): 609-634. DOI:10.1002/idm2.12109. |
62 | XU G Y, KUSHIMA A, YUAN J R, et al. Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(12): 2544-2551. DOI:10.1039/c7ee01898c. |
63 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. DOI:10.1016/j.joule.2018.07.009. |
64 | YE Q, LIANG H Y, WANG S H, et al. Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 70: 356-362. DOI:10.1016/j.jechem.2022.02.037. |
65 | SIM R, SU L S, DOLOCAN A, et al. Delineating the impact of transition-metal crossover on solid-electrolyte interphase formation with ion mass spectrometry[J]. Advanced Materials, 2024, 36(14): e2311573. DOI:10.1002/adma.202311573. |
66 | YANG X F, JIANG M, GAO X J, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal-OH group?[J]. Energy & Environmental Science, 2020, 13(5): 1318-1325. DOI:10.1039/D0EE00342E. |
67 | LIU W C, LI G, YU W, et al. Asymmetric organic-inorganic bi-functional composite solid-state electrolyte for long stable cycling of high-voltage lithium battery[J]. Energy Storage Materials, 2023, 63: 103005. DOI:10.1016/j.ensm.2023.103005. |
68 | YANG L, ZHANG H, XU H T, et al. Interfacial catalysis strategy for high-performance solid-state lithium metal batteries[J]. Advanced Energy Materials,2024, 14(39), doi:10.1002/aenm. 202401829. |
69 | COSTA C M, CARDOSO V F, MARTINS P, et al. Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): Recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications[J]. Chemical Reviews, 2023, 123(19): 11392-11487. DOI:10.1021/acs.chemrev.3c00196. |
70 | LIU Q Y, YANG G J, LI X Y, et al. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer[J]. Energy Storage Materials, 2022, 51: 443-452. DOI:10.1016/j.ensm.2022.06.040. |
71 | ZHU J X, HE S, TIAN H Y, et al. The influences of DMF content in composite polymer electrolytes on Li+‐conductivity and interfacial stability with Li‐metal[J]. Advanced Functional Materials, 2023 |
72 | YANG K, CHEN L K, MA J B, et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries[J]. Angewandte Chemie (International Ed), 2021, 60(46): 24668-24675. DOI:10.1002/anie.202110917. |
73 | WU P F, ZHOU W W, SU X, et al. Recent advances in conduction mechanisms, synthesis methods, and improvement strategies for Li1+ xAlxTi2- x(PO4)3 solid electrolyte for all-solid-state lithium batteries[J. Advanced Energy Materials, 2022 |
74 | KONG W H, JIANG Z Y, LIU Y X, et al. Stabilizing Li1.3Al0.3Ti1.7(PO4)3|Li metal anode interface in solid-state batteries by Kevlar Aramid nanofiber-based protective coating[J]. Advanced Functional Materials, 2023, 33(50): 2306748. DOI:10.1002/adfm.202306748. |
[1] | 江训昌, 喻科霖, 杨大祥, 廖敏会, 周洋. 原位聚合制备PDOL基固态电解质及其在锂金属电池中的应用[J]. 储能科学与技术, 2025, 14(1): 1-12. |
[2] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[3] | 王宇豪, 李志勇, 郭新. 聚合物基电解质在低温固态锂电池中的应用与挑战[J]. 储能科学与技术, 2024, 13(7): 2243-2258. |
[4] | 欧阳意梅, 赵蒙蒙, 钟贵明, 彭章泉. 电化学储能界面的核磁共振谱学研究方法[J]. 储能科学与技术, 2024, 13(1): 157-166. |
[5] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
[6] | 易永利, 于冉, 李武, 金翼, 戴哲仁. Mo, Al掺杂的Li7La3Zr2O12 基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499. |
[7] | 郑衍森, 王泳茵, 桂久青, 谢卓豪, 徐越, 曹巧英, 徐悦华, 刘应亮, 梁业如. 面向高电压固态锂电池的明胶/聚氧化乙烯复合电解质的制备与性能[J]. 储能科学与技术, 2023, 12(10): 3064-3074. |
[8] | 翟朋博, 常冬梅, 毕志杰, 赵宁, 郭向欣. 锂镧锆氧(LLZO)基固态锂电池界面关键问题研究进展[J]. 储能科学与技术, 2022, 11(9): 2847-2865. |
[9] | 吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. |
[10] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[11] | 刘金平, 蒲博伟, 邹喆乂, 李铭清, 丁昱清, 任元, 罗亚桥, 李杰, 李亚捷, 王达, 何冰, 施思齐. 基于蒙特卡罗模拟的离子导体热力学与动力学特性[J]. 储能科学与技术, 2022, 11(3): 878-896. |
[12] | 高清雯, 杨智昊, 李文鹏, 武文佳, 王景涛. 钴掺杂二氧化铈基层状复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(12): 3776-3786. |
[13] | 廖敏会, 杨大祥, 周洋, 万仁杰, 刘瑞平, 王强. 玻璃纤维布基多层复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(10): 3090-3099. |
[14] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[15] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||