储能科学与技术

• 储能材料与器件 •    

干法电极技术在超级电容器和锂离子电池中的研究进展

徐桂培1(), 刘浩2,3, 赖洁文1, 卢毅锋1, 黄辉1, 邸会芳2, 王振兵2()   

  1. 1.广东电网有限责任公司云浮供电局,广东 云浮 527300
    2.中国科学院山西煤炭化学研究所,山西 太原 030001
    3.中国科学院大学,北京 100049
  • 收稿日期:2024-10-28 修回日期:2024-11-20
  • 通讯作者: 王振兵 E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn
  • 作者简介:徐桂培(1985—),男,本科,主要从事配电生产技术、智能创新工作,E-mail:413536165@qq.com
  • 基金资助:
    本文无资助项目

Research Progress of Solvent-free Electrode Technology for Supercapacitor and Lithium-ion Battery

Guipei Xu1(), Hao Liu2,3, Jiewen Lai1, Yifeng Lu1, Hui Huang1, Huifang Di2, Zhenbing Wang2()   

  1. 1.Yunfu Power Supply Bureau of Guangdong Power Grid Corporation, Yunfu 527300, Guangdong, China
    2.Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-10-28 Revised:2024-11-20
  • Contact: Zhenbing Wang E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn

摘要:

干法电极技术因其具有无溶剂、制造成本低、电极机械强度高和对环境友好等优点,被认为是未来高性能储能器件开发中的关键技术。本文分析了干法电极技术的原理,归纳总结了干法电极制备中常用粘结剂的性质和应用,阐述了干法电极技术的优点,回顾了干法电极技术的起源和发展历程,介绍了干法电极技术在超级电容器和锂离子电池领域的研究进展。从工艺原理、研究进展、关键设备、关键工艺参数及优缺点对比,重点论述了6种干法电极工艺技术:聚合物纤维化、干法喷涂沉积、气相沉积、热熔挤压、直接压制和3D打印。结果说明目前大规模干电极制造工艺仍存在挑战,现有工艺都存在生产规模小、所需原料需特殊处理以及与现有产线不兼容等共性问题。最后总结了干法电极技术在锂离子电池和超级电容器领域的未来研究方向:开发新型粘结剂、优化干混工艺、调节电极质量负载、优化生产路线和探索新的工艺。本文可为相关领域的科研工作者和技术人员工作的开展提供参考,也为干法电极技术在超级电容器和锂离子电池领域的发展提供方向指导。

关键词: 锂离子电池, 超级电容器, 电极制备, 干法电极

Abstract:

Dry electrode technology is recognized as a pivotal technology in the development of high-performance energy storage devices in the future due to its solvent-free, low manufacturing cost, high mechanical strength of electrodes, and environmental friendliness. This paper analyzes the principles of dry electrode technology, summarizes the properties and applications of commonly used binders in the preparation of dry electrodes, elucidates the advantages of dry electrode technology, reviews its origin and development history, and introduces the research progress of dry electrode technology in the fields of supercapacitors and lithium-ion batteries. Focusing on six dry electrode process technologies: polymer fibrillation, dry spray deposition, vapor deposition, hot-melt extrusion, direct pressing, and 3D printing, this paper discusses them in detail from the aspects of process principles, research progress, key equipment, critical process parameters, and comparisons of advantages and disadvantages. The results indicate that challenges still exist in the current large-scale manufacturing processes of dry electrodes, and common issues such as small production scale, special raw material treatment requirements, and incompatibility with existing production lines are prevalent in existing processes. Finally, the future research directions of dry electrode technology in the fields of lithium-ion batteries and supercapacitors are summarized: developing new binders, optimizing dry mixing processes, adjusting electrode mass loading, optimizing production routes, and exploring novel processes. This paper provides a reference for researchers and technicians in related fields and offers directional guidance for the development of dry electrode technology in the fields of supercapacitors and lithium-ion batteries.

Key words: lithium ion battery, supercapacitor, electrode preparation, dry electrode

中图分类号: