储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1667-1676.doi: 10.19799/j.cnki.2095-4239.2023.0869

• 储能测试与评价 • 上一篇    下一篇

基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计

廉高棨1(), 叶敏1(), 王桥1,2, 李岩1, 麻玉川1, 孙乙丁1, 杜鹏辉1   

  1. 1.长安大学公路养护装备国家工程研究中心,陕西 西安 710064
    2.亚琛工业大学电力电子与;电气驱动研究所,德国 亚琛 52074
  • 收稿日期:2023-12-01 修回日期:2023-12-18 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: 叶敏 E-mail:gaoqi@chd.edu.cn;mingye@chd.edu.cn
  • 作者简介:廉高棨(1998—),男,博士研究生,研究方向为智能动力电池管理系统,E-mail:gaoqi@chd.edu.cn
  • 基金资助:
    陕西省科技创新团队支撑计划项目(2020TD0012);长安大学研究生科研创新实践项目(300103723030)

State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter

Gaoqi LIAN1(), Min YE1(), Qiao WANG1,2, Yan LI1, Yuchuan MA1, Yiding SUN1, Penghui DU1   

  1. 1.National Engineering Research Center for Highway Maintenance Equipment, Chang 'an University, Xi 'an 710064, Shaanxi, China
    2.Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen 52074, Germany
  • Received:2023-12-01 Revised:2023-12-18 Online:2024-05-28 Published:2024-05-28
  • Contact: Min YE E-mail:gaoqi@chd.edu.cn;mingye@chd.edu.cn

摘要:

为实现锂离子电池在快速变温环境下高精度强鲁棒性的状态监测,本文提出了一种基于改进电池模型与优化自适应容积卡尔曼滤波器的锂离子电池荷电状态估计方法。首先,讨论了伪二维电化学模型与等效电路模型中对于电池荷电状态定义上的差异,并通过中间变量来修正传统等效电路模型中安时积分法计算得到的荷电状态结果,提出了一种新的改进电池模型。其次,基于多组恒温环境下所获得的锂离子电池开路电压测试数据与动态应力测试工况数据获取了所建立模型与环境温度相关的各项参数。同时,基于矩阵对角化原理与协方差矩阵自适应原理改进了传统的容积卡尔曼滤波器,进一步提升了整体算法的稳定性和处理随机采样噪声的能力。最后,在快速变温环境中6组不同的电池工况下验证了所建立改进电池模型的精度以及存在随机采样噪声干扰时所提荷电状态估计方法的有效性。结果显示,所提出的荷电状态估计方法适用于快速变温环境下的各类电池工况,在随机采样噪声干扰下估计结果的均方根误差均在1.3%以内。

关键词: 锂离子电池, 荷电状态, 变温环境, 改进电池模型, 优化自适应容积卡尔曼滤波

Abstract:

In pursuit of high-precision and robust state monitoring of lithium-ion batteries under an environment with rapid temperature fluctuations, we propose a state-of-charge (SOC) estimation method based on an improved battery model and an optimized adaptive cubature Kalman filter (CKF). First, the discrepancies in SOC definition between a pseudo-two-dimensional electrochemical model and an equivalent circuit model are discussed. Introducing the improved battery model, the SOC results from the equivalent circuit model, calculated by ampere-hour integration, are rectified using intermediate variables. Subsequently, model parameters influenced by environmental temperature are identified from open-circuit voltage and dynamic stress test data under various constant-temperature environments. Moreover, the traditional CKF is optimized based on principles of matrix diagonalization and adaptive covariance matrix, bolstering overall stability and the ability of the proposed SOC estimation method to handle random sampling noise. Finally, experimental validation under six diverse battery operating conditions in rapidly temperature-varying environments demonstrates the accuracy of the established improved battery model and the effectiveness of the proposed SOC estimation method, even under random sampling noise. The results demonstrate the versatility of the proposed SOC estimation method across various battery operating conditions in rapidly temperature-varying environments, with an estimated root mean square error of approximately 1.3% under random sampling noise.

Key words: lithium-ion battery, state of charge, temperature-varying environments, improved battery model, optimized adaptive cubature Kalman filter

中图分类号: