1 |
YANG R X, XIONG R, WEIXIANG S, et al. Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit[J]. Engineering, 2021, 7(3): 266-289.
|
2 |
XIONG R, MA S X, LI H L, et al. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit[J]. iScience, 2020, 23(4): 101010.
|
3 |
CAI Z H, LIU G F, LUO J. Research state of charge estimation tactics of nickel-hydrogen battery[C]//2010 International Symposium on Intelligence Information Processing and Trusted Computing. Huanggang, China. IEEE, 2010: 184-187.
|
4 |
XIONG R, CAO J Y, YU Q Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2018, 6: 1832-1843.
|
5 |
BIAN C, HE H, YANG S, et al. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture[J]. Journal of Power Sources, 2020, 449: 227558.
|
6 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255.
|
7 |
TIAN Y, LAI R, LI X, et al.. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789.
|
8 |
BABAEIYAZDI I, REZAEI-ZARE A, SHOKRZADEH S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach[J]. Energy, 2021, 223: 120116.
|
9 |
LI Y, ZOU C, BERECIBAR M, et al. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Applied Energy, 2018, 232: 197-210.
|
10 |
MENG J H, STROE D I, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727.
|
11 |
HONG J, WANG Z, CHEN W, et al. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles[J]. Journal of Energy Storage, 2020, 30: 101459.
|
12 |
WANG G, LYU Z, LI X. An optimized random forest regression model for Li–ion battery prognostics and health management[J]. Batteries, 2023, 9(6): 332.
|
13 |
WANG X, HU B, SU X, et al. State of health estimation for lithium-ion batteries using random forest and gated recurrent unit[J]. Journal of Energy Storage, 2024, 76: 109796.
|
14 |
YANG N K, SONG Z Y, HOFMANN H, et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[EB/OL]. 2020: arXiv: 2010.10452. http://arxiv.org/abs/2010.10452
|
15 |
HU C, JAIN G, ZHANG P Q, et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery[J]. Applied Energy, 2014, 129: 49-55.
|
16 |
ZHOU Y, HUANG M, PECHT M, et al. Remaining useful life estimation of lithium-ion cells based on knearest neighbor regression with differential evolution optimization[J]. Journal of Cleaner Production, 2020, 249: 119409.
|
17 |
CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375.
|
18 |
LI W, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2021, 482: 228863.
|
19 |
VIDAL C, KOLLMEYER P, CHEMALI E, et al. Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit, MI, USA. IEEE, 2019: 1-6.
|
20 |
LIU Y, SHU X, YU H Z, et al. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning[J]. Journal of Energy Storage, 2021, 37: 102494.
|
21 |
WANG Y, CHEN Z, ZHANG W. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning[J]. Energy, 2022, 244: 12317.
|
22 |
Pro machine learning algorithms[M]. Apress, Berkeley, CA.
|
23 |
TORGO L. Chapman & Hall/CRC data mining and knowledge discovery series[M]. Data Mining with R Volume, 2010.
|
24 |
BREIMAN L, CUTLER A. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
25 |
BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
|
26 |
HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844.
|
27 |
BREIMAN L, FREIDMANJ H, OLSHEN R A, et al. Classification and regression trees[M]. Chapman & Hau/CRC, 1984.
|
28 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
29 |
DR K S, DR C B. Data analytics: Why data normalization[J]. International Journal of Engineering & Technology, 2018, 7(4.6): 209.
|
30 |
MURRAY R. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
|
31 |
PARZEN E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33: 1065-1076.
|
32 |
EPANECHNIKOV V A.Nonparametric estimation of a multidimensional proability density[J]. Theory of Proability and Application,1969, 14: 153-158.
|
33 |
SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986.
|