1 |
ZHENG X F, LIU C X, YAN Y Y, et al. A review of thermoelectrics research-Recent developments and potentials for sustainable and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 486-503. DOI: 10.1016/j.rser. 2013. 12.053.
|
2 |
FITRIANI, OVIK R, LONG B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 635-659. DOI: 10.1016/j.rser.2016.06.035.
|
3 |
SHU G Q, LIANG Y C, WEI H Q, et al. A review of waste heat recovery on two-stroke IC engine aboard ships[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 385-401. DOI: 10. 1016/j.rser.2012.11.034.
|
4 |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
5 |
KIM T, LEE H, CHUNG I. SnSe: The rise of the ultrahigh thermoelectric performance material[J]. Bulletin of the Korean Chemical Society, 2024, 45(3): 186-199. DOI: 10.1002/bkcs. 12821.
|
6 |
ZHOU G, WANG D. High thermoelectric performance from optimization of hole-doped CuInTe2[J]. Physical Chemistry Chemical Physics, 2016, 18(8): 5925-5931. DOI: 10.1039/c5cp 05129k.
|
7 |
CHANG C, WU M H, HE D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390): 778-783. DOI: 10.1126/science.aaq1479.
|
8 |
DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT=2.2 with bi-doped n-type SnSe single crystals[J]. Nature Communications, 2016, 7: 13713. DOI: 10.1038/ncomms13713.
|
9 |
WANG S, HUI S, PENG K L, et al. Low temperature thermoelectric properties of p-type doped single-crystalline SnSe[J]. 2018, 112(14): 142102. DOI: 10.1063/1.5023125.
|
10 |
ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377. DOI: 10.1038/nature13184.
|
11 |
TRITT T M. Holey and unholey semiconductors[J]. Science, 1999, 283(5403): 804-805. DOI: 10.1126/science.283.5403.804.
|
12 |
LIU B, HU J Z, ZHOU J, et al. Thermoelectric transport in nanocomposites[J]. Materials, 2017, 10(4): 418. DOI: 10.3390/ma10040418.
|
13 |
TAN G J, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149. DOI: 10.1021/acs.chemrev.6b00255.
|
14 |
YANG X, WANG Z Y, WANG J, et al. Synthesis of SnSe1– xSx polycrystals with enhanced thermoelectric properties via hydrothermal methods combined with spark plasma sintering[J]. ACS Applied Energy Materials, 2022, 5(9): 11662-11668. DOI: 10.1021/acsaem.2c02134.
|
15 |
LI D, LI J C, QIN X Y, et al. Thermoelectric performance for SnSe hot-pressed at different temperature[J]. Journal of Electronic Materials, 2017, 46(1): 79-84. DOI: 10.1007/s11664-016-4919-1.
|
16 |
ZHANG Q, CHERE E K, SUN J Y, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1- xSx by iodine doping[J]. Advanced Energy Materials, 2015, 5(12): 1500360. DOI: 10. 1002/aenm.201500360.
|
17 |
GRASSO S, BIESUZ M, ZOLI L, et al. A review of cold sintering processes[J]. Advances in Applied Ceramics, 2020, 119(3): 115-143. DOI: 10.1080/17436753.2019.1706825.
|
18 |
GUO J, GUO H Z, BAKER A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie (International Ed), 2016, 55(38): 11457-11461. DOI: 10.1002/anie.201605443.
|
19 |
ZHU B, SU X L, SHU S C, et al. Cold-sintered Bi2Te3-based materials for engineering nanograined thermoelectrics[J]. ACS Applied Energy Materials, 2022, 5(2): 2002-2010. DOI: 10.1021/acsaem.1c03540.
|
20 |
LU W B, WU S L, DING Q, et al. Cold sintering mediated engineering of polycrystalline SnSe with high thermoelectric efficiency[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4671-4678. DOI: 10.1021/acsami.3c15970.
|
21 |
SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846. DOI: 10.1021/ja111199y.
|
22 |
ZHAO Z H, PAN Z N, WEI F H, et al. Study on the properties of Ca9Co12O28 under high pressure[J]. Ceramics International, 2021, 47(24): 34388-34395. DOI: 10.1016/j.ceramint.2021.08.351.
|
23 |
MONIKAPANI K, VIJAY V, ABINAYA R, et al. Realizing an enhanced Seebeck coefficient and extremely low thermal conductivity in anharmonic Sb-substituted SnSe nanostructures[J]. Journal of Alloys and Compounds, 2022, 923: 165961. DOI: 10.1016/j.jallcom.2022.165961.
|
24 |
TUOMISTO F. Open volume defects[M]//Semiconductors and Semimetals. Amsterdam: Elsevier, 2013: 39-65. DOI: 10.1016/b978-0-12-396489-2.00002-3.
|
25 |
LEIPNER H S, MIKHNOVICH V V, BONDARENKO V, et al. Positron annihilation of defects in silicon deformed at different temperatures[J]. Physica B: Condensed Matter, 2003, 340: 617-621. DOI: 10.1016/j.physb.2003.09.119.
|
26 |
CHIEN C H, CHANG C C, CHEN C L, et al. Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals[J]. RSC Advances, 2017, 7(54): 34300-34306. DOI: 10.1039/C7RA05819E.
|
27 |
HE H F, LI X F, CHEN Z Q, et al. Interplay between point defects and thermal conductivity of chemically synthesized Bi2Te3 nanocrystals studied by positron annihilation[J]. The Journal of Physical Chemistry C, 2014, 118(38): 22389-22394. DOI: 10. 1021/jp508085a.
|
28 |
LOU X N, LI S, CHEN X, et al. Lattice strain leads to high thermoelectric performance in polycrystalline SnSe[J]. ACS Nano, 2021, 15(5): 8204-8215. DOI: 10.1021/acsnano.1c01469.
|
29 |
ZHANG Q K, NING S T, QI N, et al. Enhanced thermoelectric performance of a simple method prepared polycrystalline SnSe optimized by spark plasma sintering[J]. 2019, 125(22): 225109. DOI: 10.1063/1.5095197.
|
30 |
LIU H L, ZHANG X, LI S H, et al. Synthesis and thermoelectric properties of SnSe by mechanical alloying and spark plasma sintering method[J]. Journal of Electronic Materials, 2017, 46(5): 2629-2633. DOI: 10.1007/s11664-016-4833-6.
|
31 |
MARTIN J, WANG L, CHEN L D, et al. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites[J]. Physical Review B, 2009, 79(11): 115311. DOI: 10.1103/physrevb.79.115311.
|
32 |
SHANG P P, DONG J F, PEI J, et al. Highly textured N-type SnSe polycrystals with enhanced thermoelectric performance[J]. Research, 2019, 2019: 9253132. DOI: 10.34133/2019/9253132.
|
33 |
LIU D R, WANG D Y, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023, 380(6647): 841-846. DOI: 10.1126/science.adg7196.
|
34 |
PENG K L, LU X, ZHAN H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy & Environmental Science, 2016, 9(2): 454-460. DOI: 10.1039/C5EE03366G.
|
35 |
JIN Y, WANG D Y, HONG T, et al. Outstanding CdSe with multiple functions leads to high performance of GeTe thermoelectrics[J]. Advanced Energy Materials, 2022, 12(10): 2103779. DOI: 10.1002/aenm.202103779.
|
36 |
WANG J L, WU J, WANG T, et al. T-square resistivity without Umklapp scattering in dilute metallic Bi2O2Se[J]. Nature Communications, 2020, 11(1): 3846. DOI: 10.1038/s41467-020-17692-6.
|
37 |
HE H F, ZHAO B, QI N, et al. Role of vacancy defects on the lattice thermal conductivity in In2O3 thermoelectric nanocrystals: A positron annihilation study[J]. Journal of Materials Science, 2018, 53(18): 12961-12973. DOI: 10.1007/s10853-018-2544-5.
|