1 |
史丹. "双碳" 目标下, "十四五" 能源发展的新特征与新要求[J]. 中国能源, 2021, 43(8): 33-38, 32. DOI: 10.3969/j.issn.1003-2355. 2021.08.007.
|
|
SHI D. New characteristics and new tasks of energy development during the 14th five-year plan period under the "double-carbon" goal[J]. Energy of China, 2021, 43(8): 33-38, 32. DOI: 10.3969/j.issn.1003-2355.2021.08.007.
|
2 |
WEI Y M, CHEN K Y, KANG J N, et al. Policy and management of carbon peaking and carbon neutrality: A literature review[J]. Engineering, 2022, 14: 52-63. DOI: 10.1016/j.eng.2021.12.018.
|
3 |
唐伟. "碳中和" 背景下 "十四五" 能源电力发展趋势分析[J]. 油气与新能源, 2021, 33(2): 13-17. DOI: 10.3969/j.issn.2097-0021. 2021. 01.003.
|
|
TANG W. "Carbon neutrality" aimed electric power development in the 14th five-year[J]. Petroleum and New Energy, 2021, 33(2): 13-17. DOI: 10.3969/j.issn.2097-0021.2021.01.003.
|
4 |
LIN Y C, CHONG C H, MA L W, et al. Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model[J]. Energy, 2022, 261: 125194. DOI: 10.1016/j.energy.2022.125194.
|
5 |
YIN R Y, LIU Z D, SHANGGUAN F Q. Thoughts on the implementation path to a carbon peak and carbon neutrality in China's steel industry[J]. Engineering, 2021, 7(12): 1680-1683. DOI: 10.1016/j.eng.2021.10.008.
|
6 |
FENG J S, GAO G T, DABWAN Y N, et al. Thermal performance evaluation of subcritical organic Rankine cycle for waste heat recovery from sinter annular cooler[J]. Journal of Iron and Steel Research International, 2020, 27(3): 248-258. DOI: 10.1007/s42243-019-00355-2.
|
7 |
SMALLBONE A, JÜLCH V, WARDLE R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152: 221-228. DOI: 10.1016/j.enconman. 2017.09.047.
|
8 |
吴国策, 朱兴仪, 赵英汝. 一种新型的太阳能驱动ORC-HP热电联产耦合系统[J]. 化工进展, 2017, 36(S1): 195-202. DOI: 10.16085/j.issn.1000-6613.2017-1039.
|
|
WU G C, ZHU X Y, ZHAO Y R. A new solar-driven ORC-HP cogeneration coupling system[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 195-202. DOI: 10.16085/j.issn.1000-6613.2017-1039.
|
9 |
孙健, 陶建龙, 胡芸蓉, 等. 基于热泵型储电技术国内外研究综述[J]. 储能科学与技术, 2024, 13(6): 1963-1976. DOI: 10.19799/j.cnki.2095-4239.2023.0938.
|
|
SUN J, TAO J L, HU Y R, et al. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. DOI: 10.19799/j.cnki.2095-4239.2023.0938.
|
10 |
STEINMANN W D. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552. DOI: 10.1016/j.energy.2014.03.049.
|
11 |
BAIK Y J, HEO J, KOO J, et al. The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle[J]. Energy, 2014, 75: 204-215. DOI: 10.1016/j.energy.2014.07.048.
|
12 |
ROSKOSCH D, VENZIK V, ATAKAN B. Potential analysis of pumped heat electricity storages regarding thermodynamic efficiency[J]. Renewable Energy, 2020, 147: 2865-2873. DOI: 10.1016/j.renene.2018.09.023.
|
13 |
STEINMANN W D. Thermo-mechanical concepts for bulk energy storage[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 205-219. DOI: 10.1016/j.rser.2016.10.065.
|
14 |
EPPINGER B, ZIGAN L, KARL J, et al. Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids[J]. Applied Energy, 2020, 280: 115940. DOI: 10.1016/j.apenergy.2020.115940.
|
15 |
TIAN W B, XI H. Comparative analysis and optimization of pumped thermal energy storage systems based on different power cycles[J]. Energy Conversion and Management, 2022, 259: 115581. DOI: 10.1016/j.enconman.2022.115581.
|
16 |
FRATE G F, ANTONELLI M, DESIDERI U. A novel pumped thermal electricity storage (PTES) system with thermal integration[J]. Applied Thermal Engineering, 2017, 121: 1051-1058. DOI: 10.1016/j.applthermaleng.2017.04.127.
|
17 |
WANG J J, QV D, YAO Y, et al. The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study[J]. Energy, 2021, 221: 119796. DOI: 10.1016/j.energy. 2021. 119796.
|
18 |
LIU Q, DUAN Y Y, YANG Z. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids[J]. Applied Energy, 2014, 115: 394-404. DOI: 10.1016/j.apenergy.2013.11.036.
|
19 |
赵永亮, 王朝阳, 刘明, 等. 基于跨临界循环的卡诺电池储能系统构型优化[J]. 工程热物理学报, 2021, 42(7): 1659-1666.
|
|
ZHAO Y L, WANG C Y, LIU M, et al. Configuration optimization of Carnot battery energy storage system based on transcritical cycles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1659-1666.
|
20 |
圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657. DOI: 10.19799/j.cnki.2095-4239.2022.0296.
|
|
SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. DOI: 10.19799/j.cnki.2095-4239.2022.0296.
|
21 |
ZHAO Y, ZHAO C Y, MARKIDES C N, et al. Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review[J]. Applied Energy, 2020, 280: 115950. DOI: 10.1016/j.apenergy.2020.115950.
|
22 |
CHENG M J, CHEN D L, CHEN R D, et al. Metallized HOT-graphene: A novel reversible hydrogen storage medium with ultrahigh capacity[J]. International Journal of Hydrogen Energy, 2023, 48(87): 34164-34179. DOI: 10.1016/j.ijhydene. 2023. 05.169.
|
23 |
ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456. DOI: 10.1016/j.renene.2022.01.017.
|
24 |
ZHANG M Y, SHI L F, HU P, et al. Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency[J]. Journal of Energy Storage, 2023, 57: 106234. DOI: 10.1016/j.est.2022.106234.
|