储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3930-3938.doi: 10.19799/j.cnki.2095-4239.2024.0507

• 储能系统与工程 • 上一篇    下一篇

基于有机朗肯循环的卡诺电池热储能系统性能分析

冯军胜1(), 严亚茹1, 赵亮2, 董辉2()   

  1. 1.安徽建筑大学环境与能源工程学院,安徽 合肥 230601
    2.东北大学冶金学院,辽宁 沈阳 110819
  • 收稿日期:2024-06-05 修回日期:2024-06-19 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 董辉 E-mail:fjsheng076@163.com;Dongh@mail.neu.edu.cn
  • 作者简介:冯军胜(1988—),男,博士,副教授,从事烧结余热回收利用、新型热力循环等方面的研究,E-mail:fjsheng076@163.com
  • 基金资助:
    国家自然科学基金资助项目(51974087);安徽省高等学校科学研究项目(2022AH050262);安徽省自然科学基金资助项目(1908085QE203)

Performance analysis of a Carnot battery thermal energy storage system based on organic Rankine cycle

Junsheng FENG1(), Yaru YAN1, Liang ZHAO2, Hui DONG2()   

  1. 1.School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China
    2.School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
  • Received:2024-06-05 Revised:2024-06-19 Online:2024-11-28 Published:2024-11-27
  • Contact: Hui DONG E-mail:fjsheng076@163.com;Dongh@mail.neu.edu.cn

摘要:

为了进一步提高钢铁行业低温余热利用率,本文将烧结环冷机出口低温烟气余热引入由热泵(HP)循环、蓄热系统和有机朗肯循环(ORC)组成的热泵储电(PTES)系统,并构建PTES系统热力循环过程的计算模型,研究不同ORC循环工质条件下HP冷凝温度、ORC蒸发温度和ORC过热度对PTES系统热力性能的影响。研究结果表明,降低HP冷凝温度和提高ORC蒸发温度均可以提高PTES系统的制热系数(COPnew)和功率效率(ηptp)。当ORC工质为isobutane(异丁烷)时,HP冷凝温度每增加2 ℃,系统COPnewηptp分别平均减小0.16和0.88%,而ORC蒸发温度每增加2 ℃,系统COPnew、ORC热效率(ηORC)和ηptp分别平均增加0.034、0.26%和0.68%。与ORC蒸发器相比,HP冷凝器内循环工质与储热介质的温度匹配对PTES系统热力性能的影响更为明显,但HP冷凝温度对ηORC的变化没有影响。当HP冷凝温度和ORC蒸发温度不变时,采用较小的ORC过热度能够有效提高PTES系统的热力性能。综合考虑PTES系统的COPnewηORCηptp, 采用R245fa作为ORC循环工质时系统性能最好,其次是isobutane和R236ea。在低温烧结烟气余热驱动的PTES系统中,应优先选择R245fa作为ORC系统的循环工质。

关键词: 余热回收, 热泵储电, 热泵, 有机朗肯循环, 热力性能

Abstract:

To enhance the utilization of low-temperature waste heat in the steel industry, this study integrates low-temperature flue gas waste heat from the outlet of a sinter annular cooler into a pumped thermal energy storage (PTES) system. The PTES system comprises a heat pump (HP) cycle, a heat storage system, and an organic Rankine cycle (ORC). A thermodynamic calculation model of the PTES cycle process was developed, examining the effects of HP condensation temperature, ORC evaporation temperature, and ORC superheat degree on the system's performance with different working fluids. Results indicate that lowering the HP condensation temperature and raising the ORC evaporation temperature can improve the heating coefficient (COPnew) and power efficiency (ηptp) of the PTES system. When isobutane is used as the ORC working fluid, COPnew and ηptp decrease by 0.16 and 0.88%, respectively, as the HP condensation temperature increases by 2 ℃. Conversely, COPnew, ORC thermal efficiency (ηORC), and ηptp increase by 0.034, 0.26%, and 0.68%, respectively, with a 2 ℃ increase in ORC evaporation temperature. Compared to the ORC evaporator, temperature matching between the circulating working fluid and the heat storage medium in the HP condenser has a more significant impact on system performance, and the HP condensation temperature does not affect ηORC. With constant HP condensation and ORC evaporation temperatures, reducing the ORC superheat degree improves the PTES system's thermodynamic performance. Considering COPnew, ηORC, and ηptp, R245fa is identified as the optimal working fluid for the ORC, followed by isobutane and R236ea. For PTES systems driven by low-temperature sinter flue gas waste heat, R245fa is recommended as the preferred ORC working fluid.

Key words: waste heat recovery, pumped thermal energy storage, heat pump, organic Rankine cycle, thermal performance

中图分类号: