1 |
陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
|
|
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076.
|
2 |
GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and Caverns based on the Huntorf CAES plant[J]. Applied Energy, 2016, 181: 342-356.
|
3 |
郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性[J]. 中国电机工程学报, 2019, 39(5): 1366-1377.
|
|
GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377.
|
4 |
BAZDAR E, NASIRI F, HAGHIGHAT F. An improved energy management operation strategy for integrating adiabatic compressed air energy storage with renewables in decentralized applications[J]. Energy Conversion and Management, 2023, 286: 117027.
|
5 |
HARTMANN N, VÖHRINGER O, KRUCK C, et al. Simulation and analysis of different adiabatic compressed air energy storage plant configurations[J]. Applied Energy, 2012, 93: 541-548.
|
6 |
韩中合, 孙烨, 李鹏, 等. 基于AA-CAES的冷热电三联产系统的热经济性分析[J]. 太阳能学报, 2022, 43(2): 97-103.
|
|
HAN Z H, SUN Y, LI P, et al. Thermo-economic analysis of trigeneration system based on AA-CAES[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 97-103.
|
7 |
朱瑞, 徐玉杰, 李斌, 等. 太阳能蓄热式压缩空气储能系统特性分析[J]. 太阳能学报, 2019, 40(6): 1536-1544.
|
|
ZHU R, XU Y J, LI B, et al. Performance analysis on solar heat storage type compressed air energy storage system[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1536-1544.
|
8 |
薛小军, 李云飞, 田煜昆, 等. 与燃煤电站耦合的压缩空气储能系统性能分析[J]. 动力工程学报, 2022, 42(9): 835-842, 880.
|
|
XUE X J, LI Y F, TIAN Y K, et al. Performance analysis of compressed air energy storage system coupled with coal-fired power plant[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 835-842, 880.
|
9 |
KRUK-GOTZMAN S, ZIÓŁKOWSKI P, ILIEV I, et al. Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept[J]. Energy, 2023, 266: 126345.
|
10 |
许云婷, 田冉, 戴晓业, 等. 基于实际换热的ORC亚/跨临界综合评价[J]. 工程热物理学报, 2022, 43(2): 296-303.
|
|
XU Y T, TIAN R, DAI X Y, et al. Comprehensive evaluation of subcritical/supercritical ORC based on actual heat transfer[J]. Journal of Engineering Thermophysics, 2022, 43(2): 296-303.
|
11 |
肖力木, 高欣, 张世海, 等. 耦合LNG及ORC的液态空气储能系统热力学分析[J]. 储能科学与技术, 2023, 12(1): 155-164.
|
|
XIAO L M, GAO X, ZHANG S H, et al. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle[J]. Energy Storage Science and Technology, 2023, 12(1): 155-164.
|
12 |
MENG H, WANG M H, ANEKE M, et al. Technical performance analysis and economic evaluation of a compressed air energy storage system integrated with an organic Rankine cycle[J]. Fuel, 2018, 211: 318-330.
|
13 |
CHEN L X, HU P, SHENG C C, et al. A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source[J]. Energy, 2017, 131: 259-266.
|
14 |
XIA X X, LIU Z P, WANG Z Q, et al. Multi-layer performance optimization based on operation parameter-working fluid-heat source for the ORC-VCR system[J]. Energy, 2023, 272: 127103.
|
15 |
张伟明, 李科群, 陈书甜. 内燃机尾气余热驱动有机朗肯蒸汽压缩制冷循环的研究[J]. 内燃机工程, 2019, 40(1): 65-71.
|
|
ZHANG W M, LI K Q, CHEN S T. Research on organic Rankine cycle-vapor compression refrigeration system driven by exhaust heat of an IC engine[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(1): 65-71.
|
16 |
JIANG H Y, RONG Y, ZHOU X, et al. Performance assessment of an organic Rankine-vapor compression cycle (ORC-VCR) for low-grade compression heat recovery[J]. Energy Conversion and Management, 2023, 275: 116492.
|
17 |
薛小军, 胡刚刚, 陈衡, 等. 与生物质气化联合循环系统耦合的压缩空气储能系统性能分析[J]. 中国电机工程学报, 2023, 43(19): 7569-7580.
|
|
XUE X J, HU G G, CHEN H, et al. Performance assessment of compressed air energy storage system coupled with biomass integrated gasification combined cycle system[J]. Proceedings of the CSEE, 2023, 43(19): 7569-7580.
|
18 |
杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性[J]. 中国电机工程学报, 2017, 37(18): 5350-5358, 5534.
|
|
YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage[J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358, 5534.
|
19 |
CALM J M, HOURAHAN G C. Physical, safety, and environmental data for current and alternative refrigerants[C]// 23th international congress of refrigeration. 2011.
|
20 |
LASHGARI F, BABAEI S M, PEDRAM M Z, et al. Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES)[J]. Energy Conversion and Management, 2022, 255: 115333.
|
21 |
SHERWANI A F, TIWARI D. Exergy, economic and environmental analysis of organic Rankine cycle based vapor compression refrigeration system[J]. International Journal of Refrigeration, 2021, 126: 259-271.
|
22 |
DING X Q, DUAN L Q, ZHOU Y F, et al. Energy, exergy, and economic analyses of a new liquid air energy storage system coupled with solar heat and organic Rankine cycle[J]. Energy Conversion and Management, 2022, 266: 115828.
|