1 |
陈胜, 卫志农, 顾伟, 等. 碳中和目标下的能源系统转型与变革:多能流协同技术[J]. 电力自动化设备, 2021, 41(9): 3-12.
|
|
CHEN S, WEI Z N, GU W, et al. Carbon neutral oriented transition and revolution of energy systems: Multi-energy flow coordination technology[J]. Electric Power Automation Equipment, 2021, 41(9): 3-12.
|
2 |
张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945.
|
|
ZHANG J J, LI X Q, ZHANG Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945.
|
3 |
郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296.
|
|
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296.
|
4 |
龚一平, 王晨晖, 修晓青, 等. 大规模储能技术及多功能应用研究综述[J]. 供用电, 2023, 40(2): 68-77.
|
|
GONG Y P, WANG C H, XIU X Q, et al. Overview of large-scale energy storage technology and multi-function application[J]. Distribution & Utilization, 2023, 40(2): 68-77.
|
5 |
陶飞跃, 王焕然, 李瑞雄, 等. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501.
|
|
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501.
|
6 |
GUO H, XU Y J, HUANG L J, et al. Concise analytical solution and optimization of compressed air energy storage systems with thermal storage[J]. Energy, 2022, 258: 124773.
|
7 |
李阳海, 梅欣, 徐万兵, 等. 采用不同工质的压缩气体储能系统热力性能对比分析[J]. 动力工程学报, 2023, 43(2): 269-274.
|
|
LI Y H, MEI X, XU W B, et al. Comparative analysis of thermal performance of compressed gas energy storage systems using different working fluids[J]. Journal of Chinese Society of Power Engineering, 2023, 43(2): 269-274.
|
8 |
吴斌, 李睿, 李季, 等. 压缩空气储能的定位与发展[J]. 发电设备, 2023, 37(5): 283-286.
|
|
WU B, LI R, LI J, et al. Orientation and development of compressed air energy storage[J]. Power Equipment, 2023, 37(5): 283-286.
|
9 |
ZHANG Y, YANG K, HONG H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697.
|
10 |
ALAMI A H, ABU HAWILI A, HASSAN R, et al. Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system[J]. Renewable Energy, 2019, 134: 603-611.
|
11 |
LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620.
|
12 |
韩中合, 孙烨, 李鹏, 等. 压缩空气/二氧化碳储能系统的运行方式研究[J]. 太阳能学报, 2022, 43(3): 119-125.
|
|
HAN Z H, SUN Y, LI P, et al. Research on operation mode of compressed air/carbon dioxide energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 119-125.
|
13 |
DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756.
|
14 |
DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432.
|
15 |
BENATO A, STOPPATO A. Pumped Thermal Electricity Storage: A technology overview[J]. Thermal Science and Engineering Progress, 2018, 6: 301-315.
|
16 |
LIANG T, VECCHI A, KNOBLOCH K, et al. Key components for Carnot Battery: Technology review, technical barriers and selection criteria[J]. Renewable and Sustainable Energy Reviews, 2022, 163: 112478.
|
17 |
MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415.
|
18 |
MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles–Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385.
|
19 |
MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part B: Alternative system configurations[J]. Energy, 2012, 45(1): 386-396.
|
20 |
MORANDIN M, MERCANGÖZ M, HEMRLE J, et al. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58: 571-587.
|
21 |
BAIK Y, HEO J, KOO J, et al. The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle[J]. Energy, 2014, 75: 204-215.
|
22 |
KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501.
|
23 |
SALOMONE-GONZÁLEZ D, CURTO-RISSO P L, CALVO HERNÁNDEZ A, et al. Pumped heat energy storage with liquid media: Thermodynamic assessment by a transcritical Rankine-like model[J]. Journal of Energy Storage, 2022, 56: 105966.
|
24 |
LIU Z Y, ZHANG H, JIN X, et al. Thermal economy analysis and multi-objective optimization of a small CO2 transcritical pumped thermal electricity storage system[J]. Energy Conversion and Management, 2023, 293: 117451.
|
25 |
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823.
|
26 |
TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: 118957.
|
27 |
SUN L, TANG B, XIE Y H. Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization[J]. Energy, 2022, 256: 124648.
|
28 |
YAN X W, ZHAO R J, LIU Z. Performance of a CO2-mixture cycled energy storage system: Thermodynamic and economic analysis[J]. Applied Thermal Engineering, 2023, 226: 120280.
|
29 |
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229: 113679.
|
30 |
ZHAO P, XU W P, GOU F F, et al. Performance analysis of a self-condensation compressed carbon dioxide energy storage system with vortex tube[J]. Journal of Energy Storage, 2021, 41: 102995.
|
31 |
LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis[J]. Applied Energy, 2020, 269: 115067.
|
32 |
李乐璇, 徐玉杰, 尹钊, 等. 超临界二氧化碳储能系统(火用)损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834.
|
|
LI L X, XU Y J, YIN Z, et al. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834.
|
33 |
李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21): 6367-6374, 6499.
|
|
LI Y P, XU Y J, LI B, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21): 6367-6374, 6499.
|
34 |
WAN Y K, WU C, LIU C, et al. Performance analysis of a transcritical compressed CO2 energy storage system based on liquid storage[J]. Journal of Xi'an Jiao Tong University, 2023, 57(1): 25-33.
|