储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1963-1976.doi: 10.19799/j.cnki.2095-4239.2023.0938
收稿日期:
2023-12-22
修回日期:
2024-02-06
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
孙健
E-mail:chaojirebeng@163.com
作者简介:
孙健(1985—),男,博士,副教授,主要从事新型热泵技术研究,E-mail:chaojirebeng@163.com。
基金资助:
Jian SUN(), Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG
Received:
2023-12-22
Revised:
2024-02-06
Online:
2024-06-28
Published:
2024-06-26
Contact:
Jian SUN
E-mail:chaojirebeng@163.com
摘要:
“双碳”目标下,包括太阳能和风能在内的可再生能源发电稳步增长。现有技术难以支撑消纳逐年增加的可再生能源亟需大规模储能装置保障电网的稳定运行的现状。热泵储电技术作为新兴储能技术手段,具有高效率、高储能密度、灵活的按需构建优点,相对于正在发展中的几种储能技术,热泵储电技术具有较好的研究价值和应用前景。本文首先介绍了热泵储电系统的工作原理,梳理归纳了当前热泵储电系统的主要分类包括基于布雷顿循环的(三种类型)储电系统以及基于朗肯循环的储电系统,对比总结了两种储电系统的技术特点,并对热泵储电系统核心部件的研究现状进行了综述。综合分析表明,迄今为止热泵储电技术的研究主要集中在储电系统本身的流程设计和热力学优化分析。近年来部分研究人员搭建了实际生产应用的热泵储电示范系统,加快热泵储电技术的产业化进程。热泵储电系统不仅在储电领域应用前景广阔,在余热回收以及冷热电联产领域同样具有一定的应用潜力,构建利用低品位余热及面向生产生活场景下的多能互补系统,能够使热泵储电技术成为能源系统中更高效的电、热、冷调节管理技术手段,有望快速推动我国能源系统向绿色低碳化转型。
中图分类号:
孙健, 陶建龙, 胡芸蓉, 蔡潇龙, 杨勇平. 基于热泵型储电技术国内外研究综述[J]. 储能科学与技术, 2024, 13(6): 1963-1976.
Jian SUN, Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976.
1 | 郑天一. 简析储能技术的应用研究[C]// 第三十六届中国(天津)2022'IT、网络、信息技术、电子、仪器仪表创新学术会议论文集. 天津, 2022: 178-181. |
2 | 谢彦祥, 肖汉, 夏雪, 等. 碳中和目标下中国碳减排路径及建议[J]. 电工电气, 2022(5): 1-7. |
XIE Y X, XIAO H, XIA X, et al. China's carbon emission reduction paths and suggestions under the carbon neutrality target[J]. Electrotechnics Electric, 2022(5): 1-7. | |
3 | 沈小晓, 李强, 岳林炜. 多国加快新型储能技术发展[N]. 人民日报, 2022-07-19(17). |
4 | BENATO A, STOPPATO A. Pumped Thermal Electricity Storage: A technology overview[J]. Thermal Science and Engineering Progress, 2018, 6: 301-315. |
5 | 电力规划设计总院. 中国能源发展报告-2020[M]. 北京: 人民日报出版社, 2021. |
6 | 杜芳. 储能技术在新能源电力系统中的应用分析[J]. 中国高新科技, 2020(20): 17-18. |
DU F. Application analysis of energy storage technology in new energy power system[J]. China High and New Technology, 2020(20): 17-18. | |
7 | 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43(17): 6660-6681. |
WANG S B, KONG L G, CAI G W, et al. Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43(17): 6660-6681. | |
8 | BARBOUR E, GRANT WILSON I A, RADCLIFFE J, et al. A review of pumped hydro energy storage development in significant international electricity markets[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 421-432. |
9 | 万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
WAN M Z, WANG Y Y, LI J, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. | |
10 | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. | |
11 | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
XUE F, MA X M, YOU Y J. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. | |
12 | 霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5(2): 197-203. |
HUO X X, WANG J, JIANG L, et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. | |
13 | 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99. |
XU C B, LIU J G. Hydrogen energy storage in China's new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99. | |
14 | BENATO A. Performance and cost evaluation of an innovative pumped thermal electricity Storage power system[J]. Energy, 2017, 138: 419-436. |
15 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. | |
16 | MCTIGUE J, FARRES-ANTUNEZ P, ELLINGWOOD K, et al. Pumped thermal electricity storage with supercritical CO2 cycles and solar heat input[C]//The Vii International Young Researchers' Conference—Physics, Technology, Innovations (pti-2020)", "AIP Conference Proceedings. Ekaterinburg, Russia. AIP Publishing, 2020. |
17 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
18 | MARGUERRE F.Ueber ein neues verfahren zur aufspeicherung elektrischer energie[J].Mitteilungen der Vereinigung der Elektrizitätswerke,1924, 354(55): 27-35. |
19 | DUMONT O, LEMORT V. Mapping of performance of pumped thermal energy storage (carnot battery) using waste heat recovery[J]. Energy, 2020, 211: 118963. |
20 | DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432. |
21 | HOWES J. Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100(2): 493-503. |
22 | THESS A. Thermodynamic efficiency of pumped heat electricity storage[J]. Physical Review Letters, 2013, 111(11): 110602. |
23 | WANG L, LIN X P, ZHANG H, et al. Thermodynamic analysis and optimization of pumped thermal-liquid air energy storage (PTLAES)[J]. Applied Energy, 2023, 332: 120499. |
24 | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. |
ZHANG H, WANG L, LIN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. | |
25 | ZHANG H, WANG L, LIN X P, et al. Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage[J]. Energy, 2022, 239: 121966. |
26 | ZHAO Y L, LIU M, SONG J, et al. Advanced exergy analysis of a Joule-Brayton pumped thermal electricity storage system with liquid-phase storage[J]. Energy Conversion and Management, 2021, 231: 113867. |
27 | 杨鹤, 杜小泽. 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42(1): 196-211. |
YANG H, DU X Z. Performance analysis and multi-objective optimization of brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42(1): 196-211. | |
28 | DAVENNE T R, PETERS B M. An analysis of pumped thermal energy storage with de-coupled thermal stores[J]. Frontiers in Energy Research, 2020, 8: 160. |
29 | 张谨奕, 王含, 白宁, 等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(8): 43-49, 63. |
ZHANG J Y, WANG H, BAI N, et al. Thermodynamic analysis for heat pump electricity storage system[J]. Thermal Power Generation, 2020, 49(8): 43-49, 63. | |
30 | MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811. |
31 | 吴智泉, 王际辉, 白宁.闭式布雷顿循环热泵储电系统的(㶲)分析[J]. 太阳能学报, 2023, 44(3): 336-343. |
WU Z Q, WANG J H, BAI N.Analysis of closed Brayton cycle heat pump storage system[J]. Journal of Solar Energy, 2023, 44(3): 336-343. | |
32 | GUO J C, CAI L, CHEN J C, et al. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system[J]. Energy, 2016, 113: 693-701. |
33 | PÉREZ-GALLEGO D, GONZALEZ-AYALA J, CALVO HERNÁNDEZ A, et al. Thermodynamic performance of a brayton pumped heat energy storage system: Influence of internal and external irreversibilities[J]. Entropy, 2021, 23(12): 1564. |
34 | 王际辉, 白宁, 沈峰. 储热温度对热泵储电系统效率的影响[J]. 太阳能学报, 2023, 44(7): 48-54. |
WANG J H, BAI N, SHEN F. Effect of thermal storage temperature on efficiency of pumped thermal electricity storage system[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 48-54. | |
35 | 王际辉, 白宁. 热泵储电系统中压降对效率的影响[J]. 中外能源, 2022, 27(8): 86-93. |
WANG J H, BAI N. Influence of pressure drop on efficiency in pumped thermal electricity storage system[J]. Sino-Global Energy, 2022, 27(8): 86-93. | |
36 | WANG L, LIN X P, ZHANG H, et al. Analytic optimization of Joule-Brayton cycle-based pumped thermal electricity storage system[R]. Analytic Optimization Of Joule-Brayton Cycle-Based Pumped Thermal Electricity Storage System, 2021. |
37 | 张谨奕, 白宁, 李京浩, 等. 基于Simulink的热泵储电系统动态仿真[J]. 分布式能源, 2020, 5(3): 15-22. |
ZHANG J Y, BAI N, LI J H, et al. Dynamic simulation of pumped thermal electricity storage system based on simulink[J]. Distributed Energy, 2020, 5(3): 15-22. | |
38 | ZHANG H, WANG L, LIN X P, et al. Parametric optimisation and thermo-economic analysis of Joule-Brayton cycle-based pumped thermal electricity storage system under various charging-discharging periods[J]. Energy, 2023, 263: 125908. |
39 | 路唱, 史幸平, 贾明祥, 等. 热泵储电系统的动态模型及其启动特性分析[J]. 中国电机工程学报, 2022, 42(S1): 167-176. |
LU C, SHI X P, JIA M X, et al. Dynamic model of heat pump power storage system and its start-up characteristics analysis[J]. Proceedings of the CSEE, 2022, 42(S1): 167-176. | |
40 | LU C, SHI X P, HE Q, et al. Dynamic modeling and numerical investigation of novel pumped thermal electricity storage system during startup process[J]. Journal of Energy Storage, 2022, 55: 105409. |
41 | YANG H, LI J D, GE Z H, et al. Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle[J]. Energy, 2023, 263: 125930. |
42 | ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: 115607. |
43 | 孙鹏. 基于高低温蓄热的蒸汽热泵储能系统设计与应用研究[D]. 杭州: 浙江大学, 2023. |
SUN P. Design and application of pumped thermal energy storage system based on high and low temperature energy storage[D]. Hangzhou: Zhejiang University, 2023. | |
44 | FARRES-ANTUNEZ P, XUE H B, WHITE A J. Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle[J]. Journal of Energy Storage, 2018, 18: 90-102. |
45 | FARRES-ANTUNEZ P, MCTIGUE J D, WHITE A J. A pumped thermal energy storage cycle with capacity for concentrated solar power integration[C]//2019 Offshore Energy and Storage Summit (OSES). BREST, France. IEEE, 2019: 1-10. |
46 | PETROLLESE M, CASCETTA M, TOLA V, et al. Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation[J]. Energy, 2022, 247: 123516. |
47 | DIETRICH A, DAMMEL F, STEPHAN P. Exergoeconomic analysis of a pumped heat electricity storage system based on a Joule/Brayton cycle[J]. Energy Science & Engineering, 2021, 9(5): 645-660. |
48 | SMALLBONE A, JÜLCH V, WARDLE R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152: 221-228. |
49 | FRATE G F, FERRARI L, DESIDERI U. Multi-criteria economic analysis of a pumped thermal electricity storage (PTES) with thermal integration[J]. Frontiers in Energy Research, 2020, 8: 53. |
50 | AMEEN M T, MA Z, SMALLBONE A, et al. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency[J].Applied Energy, 2023, 333: 120580. |
51 | MORANDIN M, MERCANGÖZ M, HEMRLE J, et al. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58571-587. |
52 | MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415. |
53 | MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles–Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385. |
54 | MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles–Part B: Alternative system configurations[J]. Energy, 2012, 45(1): 386-396. |
55 | FRATE G F, FERRARI L, DESIDERI U. Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage[J]. Energy Conversion and Management, 2020, 208: 112530. |
56 | 赵永亮, 王朝阳, 刘明, 等. 基于跨临界循环的卡诺电池储能系统构型优化[J]. 工程热物理学报, 2021, 42(7): 1659-1666. |
ZHAO Y L, WANG C Y, LIU M, et al. Configuration optimization of Carnot battery energy storage system based on transcritical cycles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1659-1666. | |
57 | CHEN L, HU P, ZHAO P P, et al. Thermodynamic analysis of a high temperature pumped thermal electricity storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC)[J]. Energy Conversion and Management, 2018, 77: 150-160. |
58 | STEINMANN W D, BAUER D, JOCKENHÖFER H, et al. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity[J]. Energy, 2019, 183: 185-190. |
59 | KURŞUN B, ÖKTEN K. Comprehensive energy, exergy, and economic analysis of the scenario of supplementing pumped thermal energy storage (PTES) with a concentrated photovoltaic thermal system[J]. Energy Conversion and Management, 2022, 260: 115592. |
60 | JOCKENHÖFER H, STEINMANN W D, BAUER D. Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration[J]. Energy, 2018, 145: 665-676. |
61 | HU S Z, YANG Z, LI J, et al. Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios[J]. Energy Conversion and Management, 2021, 236: 114072. |
62 | EPPINGER B, ZIGAN L, KARL J, et al. Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids[J]. Applied Energy, 2020, 280: 115940. |
63 | AMEEN M T, MA Z W, SMALLBONE A, et al. Experimental study and analysis of a novel layered packed-bed for thermal energy storage applications: A proof of concept[J]. Energy Conversion and Management, 2023, 277: 116648. |
64 | BENATO A, STOPPATO A. Integrated thermal electricity storage system: energetic and cost performance[J]. Energy Conversion and Management, 2019, 197: 111833. |
65 | ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456. |
66 | 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657. |
SHENG L, XUE X J, BO Y J, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. | |
67 | ALBERT M, MA Z W, BAO H S, et al. Operation and performance of brayton pumped thermal energy storage with additional latent storage[J]. Applied Energy, 2022, 10.1016/j.apenergy.2022.118700. |
68 | XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: 120274. |
69 | GE Y Q, ZHAO Y, ZHAO C Y. Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores[J]. Renewable Energy, 2021, 174: 939-951. |
70 | GEORGIOU S, SHAH N, MARKIDES C N. A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems[J]. Applied Energy, 2018, 226: 1119-1133. |
71 | 殷子彦, 戴叶, 徐博, 等. 新型热泵储电系统的设计方案及其性能分析[J]. 可再生能源, 2019, 37(5): 784-790. |
YIN Z Y, DAI Y, XU B, et al. New design scheme of pumped thermal electricity system and its performance analysis[J]. Renewable Energy Resources, 2019, 37(5): 784-790. | |
72 | HASSAN A H, O'DONOGHUE L, SÁNCHEZ-CANALES V, et al. Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations[J]. Energy Reports, 2020, 6: 147-159. |
73 | STEINMANN W D. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552. |
74 | WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 523-534. |
[1] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[2] | 周理, 刘琰. 合金材料在储能技术中的应用与发展[J]. 储能科学与技术, 2024, 13(6): 1874-1876. |
[3] | 孙振新, 张秩鸣, 马俯波, 蒋丛进, 杜昊易, 陈换军, 张玉魁. 基于熵理论的能量调节性能研究[J]. 储能科学与技术, 2024, 13(5): 1584-1591. |
[4] | 何婷, 乔俊强, 吴国栋. 基于GRU算法的弃电量预测及电-氢混合储能系统的运行优化[J]. 储能科学与技术, 2024, 13(5): 1731-1740. |
[5] | 张京业, 林玉鑫, 邱清泉, 肖立业. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3): 924-933. |
[6] | 李天晨, 尹建政, 张大伟, 刘小恒. 基于水电站储能技术的可再生能源并网策略研究[J]. 储能科学与技术, 2024, 13(2): 677-679. |
[7] | 逄敏. 基于可再生能源与储能耦合的建筑能源规划与利用[J]. 储能科学与技术, 2024, 13(2): 586-588. |
[8] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
[9] | 张家俊, 李晓琼, 张振涛, 郝佳豪, 郑平洋, 于泽, 杨俊玲, 荆亚楠, 越云凯. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. |
[10] | 秦婷婷, 周学志, 郭丁彰, 盛勇, 徐玉杰, 左志涛, 李辉, 陈海生. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
[11] | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
[12] | 李育磊, 刘玮, 董斌琦, 夏定国. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
[13] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[14] | 江涵, 徐新智, 刘哲, 张锐, 胡旭. 沙特能源转型及氢能发展展望[J]. 储能科学与技术, 2022, 11(7): 2354-2365. |
[15] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||