储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1963-1976.doi: 10.19799/j.cnki.2095-4239.2023.0938

• 储能系统与工程 • 上一篇    下一篇

基于热泵型储电技术国内外研究综述

孙健(), 陶建龙, 胡芸蓉, 蔡潇龙, 杨勇平   

  1. 新能源电力系统全国重点实验室(华北电力大学),北京 102206
  • 收稿日期:2023-12-22 修回日期:2024-02-06 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 孙健 E-mail:chaojirebeng@163.com
  • 作者简介:孙健(1985—),男,博士,副教授,主要从事新型热泵技术研究,E-mail:chaojirebeng@163.com
  • 基金资助:
    国家自然科学基金重大项目(52090062);国家重点研发计划(2019YFE0104900);中央高校基本科研业务费专项资金资助(2020MS009)

Summary of research on power storage technology based on heat pump at home and abroad

Jian SUN(), Jianlong TAO, Yunrong HU, Xiaolong CAO, Yongping YANG   

  1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China
  • Received:2023-12-22 Revised:2024-02-06 Online:2024-06-28 Published:2024-06-26
  • Contact: Jian SUN E-mail:chaojirebeng@163.com

摘要:

“双碳”目标下,包括太阳能和风能在内的可再生能源发电稳步增长。现有技术难以支撑消纳逐年增加的可再生能源亟需大规模储能装置保障电网的稳定运行的现状。热泵储电技术作为新兴储能技术手段,具有高效率、高储能密度、灵活的按需构建优点,相对于正在发展中的几种储能技术,热泵储电技术具有较好的研究价值和应用前景。本文首先介绍了热泵储电系统的工作原理,梳理归纳了当前热泵储电系统的主要分类包括基于布雷顿循环的(三种类型)储电系统以及基于朗肯循环的储电系统,对比总结了两种储电系统的技术特点,并对热泵储电系统核心部件的研究现状进行了综述。综合分析表明,迄今为止热泵储电技术的研究主要集中在储电系统本身的流程设计和热力学优化分析。近年来部分研究人员搭建了实际生产应用的热泵储电示范系统,加快热泵储电技术的产业化进程。热泵储电系统不仅在储电领域应用前景广阔,在余热回收以及冷热电联产领域同样具有一定的应用潜力,构建利用低品位余热及面向生产生活场景下的多能互补系统,能够使热泵储电技术成为能源系统中更高效的电、热、冷调节管理技术手段,有望快速推动我国能源系统向绿色低碳化转型。

关键词: 可再生能源, 储能技术, 热泵储电

Abstract:

Under the strategic goal of "double carbon," renewable energy power generation, including solar and wind energy, has experienced steady growth. However, the existing technology faces challenges in supporting the increasing consumption of renewable energy, necessitating large-scale energy storage devices to ensure the stable operation of the power grid. Pumped thermal energy storage(PTES)technology is a promising solution, offering high efficiency, high energy storage density, and flexible on-demand construction. Compared to other large-scale energy storage technologies under development, PTES demonstrates superior research value and application prospects. This paper begins outlining the working principle of PTES and categorizes it into power storage systems based on the Brayton cycle (three types) and systems based on the Rankine cycle. A comparison and summary of the technical characteristics of these two systems are provided. While the Brayton cycle-based system faces challenges related to high heat storage temperatures, the Rankine cycle-based system effectively reduces heat storage temperatures but introduces issues with high system pressure. Subsequently, the research status of the core components of PTES is outlined, along with the influence of storage tank arrangement and energy storage medium type on system efficiency. Comprehensive analysis reveals that current heat pump power storage technology research primarily focuses on the power storage system's process design and thermodynamic optimization analysis. PTES holds promise in power storage and exhibits potential in waste heat recovery and cogeneration. Establishing a multi-energy complementary system utilizing low-grade waste heat in various production and life scenarios can enhance PTES's efficiency in electricity, heat, and cold regulation and management within the energy system. This approach is anticipated to expedite the transition of China's energy system toward greener and lower carbon emissions.

Key words: renewable energy, energy storage technology, pumped thermal electricity storage

中图分类号: