储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 467-478.doi: 10.19799/j.cnki.2095-4239.2025.0189
高宇辰(), 李蔚林(
), 陈翔(
), 袁誉杭, 牛艺琳, 张强(
)
收稿日期:
2025-02-28
修回日期:
2025-03-03
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
陈翔,张强
E-mail:gyc22@mails.tsinghua.edu.cn;liwl22@mails.tsinghua.edu.cn;xiangchen@mail.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
作者简介:
高宇辰(2000—),男,博士研究生,研究方向为锂电池材料人工智能研究,E-mail:gyc22@mails.tsinghua.edu.cn基金资助:
Yuchen GAO(), Weilin LI(
), Xiang CHEN(
), Yuhang YUAN, Yilin NIU, Qiang ZHANG(
)
Received:
2025-02-28
Revised:
2025-03-03
Online:
2025-02-28
Published:
2025-03-18
Contact:
Xiang CHEN, Qiang ZHANG
E-mail:gyc22@mails.tsinghua.edu.cn;liwl22@mails.tsinghua.edu.cn;xiangchen@mail.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
摘要:
在现代能源体系中,化石能源正逐步向可再生能源转型,能源存储将成为新型电力系统的关键调节单元,但这一进程面临研发低效、系统优化复杂、安全管控滞后以及市场机制不完善等多重挑战。深度求索(DeepSeek)大模型凭借其低能耗、高能效以及卓越的推理能力,为突破储能领域关键瓶颈开辟了新路径。DeepSeek通过采用多头潜在注意力、混合专家模型及多词元预测等核心技术,显著降低了模型训练与推理的能耗成本,展现出在储能研究领域的广泛应用前景,有望推动材料研发从“经验试错”到“智能设计”的范式跃迁,在系统优化中构建多尺度耦合的数字孪生底座,在安全管控中推动被动响应向主动预警的模式转型,在政策分析中建立数据驱动的市场动态评估体系。本文提出“系统共生、能效共进”的发展模式,为人工智能与清洁能源技术的深度融合构建了技术基座,有望加速零碳算力基础设施的构建,引领储能技术迈向智能化新纪元。
中图分类号:
高宇辰, 李蔚林, 陈翔, 袁誉杭, 牛艺琳, 张强. DeepSeek在储能研究中的应用前景展望[J]. 储能科学与技术, 2025, 14(2): 467-478.
Yuchen GAO, Weilin LI, Xiang CHEN, Yuhang YUAN, Yilin NIU, Qiang ZHANG. A perspective on DeepSeek application in energy storage research[J]. Energy Storage Science and Technology, 2025, 14(2): 467-478.
1 | AGENCY I E. Net Zero by 2050: A Roadmap for the Global Energy Sector[M]. OECD, 2021. DOI:10.1787/c8328405-en. |
2 | 国家能源局. 2024年可再生能源并网运行情况 [EB/OL]. (2025-01-27). [2025-02-13]. https://video.cpnn.com.cn/news/nytt/202501/t20250127_1769671.html |
3 | 代宇涵, 刘春, 周朋, 等. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695. |
DAI Y H, LIU C, ZHOU P, et al. Application and research progress of energy storage technology in power systems under the dual carbon background[J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695. | |
4 | 中关村储能产业技术联盟. 2024年度cnesa储能数据重磅发布 [EB/OL]. (2025-01-15). [2025-02-13]. https://mp.weixin.qq.com/s/ytgUGjJcdBq3pHI9vby51A |
5 | 张继阳, 郑秀, 赵斌, 等. 电网级大规模储能的电池技术进展[J]. 电池, 2024, 54(5): DOI: 10.19535/j.1001-1579.2024.05.029 |
ZHANG J Y, ZHENG X, ZHAO B, et al. Progress in battery technology for large-scale grid-level energy storage[J]. Battery Bimonthly, 2024, 54(5): DOI: 10.19535/j.1001-1579.2024.05.029 | |
6 | 李政, 李伟起, 张忠伟, 等. "双碳" 目标下我国电力系统灵活性资源发展策略研究[J]. 中国工程科学, 2024, 26(4): 108-120. DOI: 10.15302/J-SSCAE-2024.04.018. |
LI Z, LI W Q, ZHANG Z W, et al. Development strategy of flexible resources in China's power system under the carbon peaking and carbon neutrality goals[J]. Strategic Study of CAE, 2024, 26(4): 108-120. DOI: 10.15302/J-SSCAE-2024.04.018. | |
7 | BENAYAD A, DIDDENS D, HEUER A, et al. High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research[J]. Advanced Energy Materials, 2022, 12(17): 2102678. DOI:10. 1002/aenm.202102678. |
8 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: Hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. DOI:10.1021/acs.chemrev.1c00108. |
9 | LI Z, HOU L P, YAO N, et al. Correlating polysulfide solvation structure with electrode kinetics towards long-cycling lithium-sulfur batteries[J]. Angewandte Chemie (International Ed), 2023, 62(43): e202309968. DOI:10.1002/anie.202309968. |
10 | LI Z, YU L G, BI C X, et al. A three-way electrolyte with ternary solvents for high-energy-density and long-cycling lithium-sulfur pouch cells[J]. SusMat, 2024, 4(2): e200. DOI:10.1002/sus2.200. |
11 | 黄海泉, 黄晓巍, 姜望, 等. 新型配电网分布式储能系统方案及配置研究综述[J]. 南方能源建设, 2024, 11(4): 42-53. DOI: 10.16516/j.ceec.2024.4.05. |
HUANG H Q, HUANG X W, JIANG W, et al. A review of distributed energy storage system solutions and configurations for new distribution grids[J]. Southern Energy Construction, 2024, 11(4): 42-53. DOI: 10.16516/j.ceec.2024.4.05. | |
12 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890. DOI:10.1038/s41560-019-0474-3. |
13 | 沈馨, 张睿, 赵辰孜, 等. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. DOI: 10.19799/j.cnki.2095-4239.2022.0326. |
SHEN X, ZHANG R, ZHAO C Z, et al. Recent advances in mechano-electrochemistry in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. DOI: 10.19799/j.cnki.2095-4239.2022.0326. | |
14 | 黄家辉, 邝祝芳. 人工智能与储能技术融合的前沿发展[J]. 储能科学与技术, 2024, 13(9): 3161-3181. DOI: 10.19799/j.cnki.2095-4239.2024.0575. |
HUANG J H, KUANG Z F. The forefront of the integration of artificial intelligence and energy storage technologies[J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. DOI: 10.19799/j.cnki.2095-4239.2024.0575. | |
15 | 袁誉杭, 高宇辰, 张俊东, 等. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. DOI: 10.19799/j.cnki.2095-4239.2024.0176. |
YUAN Y H, GAO Y C, ZHANG J D, et al. The application of large language models in energy storage research[J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. DOI: 10.19799/j.cnki.2095-4239.2024.0176. | |
16 | CHEN X, LIU X Y, SHEN X, et al. Applying machine learning to rechargeable batteries: From the microscale to the macroscale[J]. Angewandte Chemie, 2021, 133(46): 24558-24570. DOI:10.1002/ange.202107369. |
17 | YAO N, CHEN X, FU Z H, et al. Applying classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021. DOI:10.1021/acs.chemrev.1c00904. |
18 | GAO Y C, YAO N, CHEN X, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes[J]. Journal of the American Chemical Society, 2023, 145(43): 23764-23770. DOI:10.1021/jacs.3c08346. |
19 | GAO Y C, YUAN Y H, HUANG S Z, et al. A knowledge-data dual-driven framework for predicting the molecular properties of rechargeable battery electrolytes[J]. Angewandte Chemie (International Ed), 2025, 64(4): e202416506. DOI:10.1002/anie.202416506. |
20 | 清华四川能源互联网研究院. 清华四川院助力江苏首座AI智慧调控光储充换一体化站建设[EB/OL]. (2025-01-06). [2025-02-13]. https://mp.weixin.qq.com/s/hVgxfkTv6bAlRpCAjddWjA |
21 | WANG Y, FENG X N, GUO D X, et al. Temperature excavation to boost machine learning battery thermochemical predictions[J]. Joule, 2024, 8(9): 2639-2651. DOI:10.1016/j.joule.2024.07.002. |
22 | JAIN M, SUN X Q, DATTA S, et al. A machine learning framework to deconstruct the primary drivers for electricity market price events[C]//2023 IEEE Power & Energy Society General Meeting (PESGM). July 16-20, 2023, Orlando, FL, USA. IEEE, 2023: 1-5. DOI:10.1109/PESGM52003.2023.10252752. |
23 | PATTERSON D, GONZALEZ J, LE Q, et al. Carbon emissions and large neural network training[EB/OL]. 2021: 2104.10350. https://arxiv.org/abs/2104.10350v3. |
24 | WILSON L. Average household electricity consumption-2025[EB/OL]. (2025). [2025-02-13]. https://shrinkthatfootprint.com/average-household-electricity-consumption/ |
25 | ARGERICH M F, PATIÑO-MARTÍNEZ M. Measuring and improving the energy efficiency of large language models inference[J]. IEEE Access, 2024, 12: 80194-80207. DOI:10.1109/ACCESS.2024.3409745. |
26 | OPENAI. AI and compute[EB/OL]. (2018-05-16). [2025-02-13]. https://openai.com/index/ai-and-compute/ |
27 | AGENCY I E. Electricity 2024[R]. Paris: International Energy Agency, 2024. |
28 | COMPANY M. Global energy perspective 2024[R]. McKinsey & Company, 2024. |
29 | DEEPSEEK-AI. DeepSeek-v3 technical report[EB/OL]. (2025-02-18). [2025-02-25]. https://arxiv.org/abs/2412.19437 |
30 | RAY PERRAULT, CLARK J. Artificial intelligence index report 2024[R]. USA: Stanford University Human-Cenrered Artificial Intelligence, 2024. |
31 | LIU A, FENG B, XUE B, et al. DeepSeek-v3 technical report[J]. arXiv preprint arXiv:, 2024. |
32 | DeepSeek-AI, GUO D Y, YANG D J, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. 2025: 2501.12948. https://arxiv.org/abs/2501.12948v1. |
33 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30. |
34 | RAMIJ J, NOWLAN S, HINTON G. Adaptive mixture of local expert[J]. Neural Comput, 1991, 3: 79-87. |
35 | SHAZEER N, MIRHOSEINI A, MAZIARZ K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer[EB/OL]. 2017: 1701.06538. https://arxiv.org/abs/1701. 06538v1. |
36 | SHEN S, HOU L, ZHOU Y Q, et al. Mixture-of-experts meets instruction tuning: A winning combination for large language models[C]//International Conference on Learning Representations, 2023. |
37 | WANG L A, GAO H Z, ZHAO C G, et al. Auxiliary-loss-free load balancing strategy for mixture-of-experts[R/OL]. 2024. https://ui.adsabs.harvard.edu/abs/2024arXiv240815664W/abstract. |
38 | GLOECKLE F, IDRISSI B Y, ROZIèRE B, et al. Better & faster large language models via multi-token prediction[EB/OL]. (2024-04-30). [2025-02-27]. https://arxiv.org/abs/2404.19737. |
39 | LI N, CHEN Z P, REN W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360-17365. DOI:10.1073/pnas.1210072109. |
40 | WU X S, LIU T, LEE Y G, et al. Glycerol triacetate-based flame retardant high-temperature electrolyte for the lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2024, 16(19): 24590-24600. DOI:10.1021/acsami.4c02323. |
41 | LI G X, KOVERGA V, NGUYEN A, et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent[J]. Nature Energy, 2024, 9: 817-827. DOI:10.1038/s41560-024-01519-5. |
42 | CHOI I R, CHEN Y L, SHAH A, et al. Asymmetric ether solvents for high-rate lithium metal batteries[J]. Nature Energy, 2025. DOI:10.1038/s41560-025-01716-w. |
43 | ZOU C F, YANG L, LUO K L, et al. Performance improvement of Li6PS5Cl solid electrolyte modified by poly(ethylene oxide)-based composite polymer electrolyte with ZSM-5 molecular sieves[J]. ACS Applied Energy Materials, 2022, 5(2): 2356-2365. DOI:10.1021/acsaem.1c03819. |
44 | CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nature Energy, 2024, 9: 1084-1094. DOI:10.1038/s41560-024-01596-6. |
45 | KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+ xP1– xGexS5I for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(47): 16330-16339. DOI:10.1021/jacs.8b10282. |
46 | ZHOU W D, LI Y T, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3(1): 52-57. DOI:10.1021/acscentsci.6b00321. |
47 | GAO X, YU Z A, WANG J Y, et al. Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(31): e2301260120. DOI:10.1073/pnas.2301260120. |
48 | LUO C, HU E Y, GASKELL K J, et al. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14712-14720. DOI:10.1073/pnas.2006301117. |
49 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. DOI:10.1038/nmat3066. |
50 | ZHU L, WANG Y W, CHEN J C, et al. Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites[J]. Science Advances, 2022, 8(11): eabj7698. DOI:10.1126/sciadv.abj7698. |
51 | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8: 230-240. DOI:10.1038/s41560-023-01208-9. |
52 | LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1: 100010. DOI:10.1016/j.etran.2019.100010. |
53 | KATO Y, HORI S, KANNO R. Li10GeP2S12-type superionic conductors: Synthesis, structure, and ionic transportation[J]. Advanced Energy Materials, 2020, 10(42): 2002153. DOI:10.1002/aenm.202002153. |
[1] | 梁振飞, 王兴兴, 胡皓晨, 李艳红, 欧阳博学, 孙晓云, 高瑞茂, 叶骏, 王德仁. 锌溴液流电池电解液与隔膜技术研究进展[J]. 储能科学与技术, 2025, 14(2): 583-600. |
[2] | 卢鸣. 基于数据挖掘的热能储存异常数据检测方法[J]. 储能科学与技术, 2025, 14(2): 831-833. |
[3] | 许堉坤, 俞钧, 蒋超, 王婧骅, 赵婉茹. 成本角度分析储能技术与电力系统的优化设计[J]. 储能科学与技术, 2025, 14(2): 876-878. |
[4] | 孙爱民, 洪建军, 郑建锋. 新能源并网中主要储能技术类型[J]. 储能科学与技术, 2025, 14(2): 879-882. |
[5] | 田野, 王珊珊, 姚旭, 刘佳鑫, 韩晓冬. 配电网通信与分布式储能技术协同应用的意义与发展[J]. 储能科学与技术, 2025, 14(1): 190-192. |
[6] | 闻娜, 刘成伟, 张晓阳, 高健, 麻丽明. 智能电网中自动化控制与储能技术的协同应用研究[J]. 储能科学与技术, 2025, 14(1): 219-221. |
[7] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[8] | 黄家辉, 邝祝芳. 人工智能与储能技术融合的前沿发展[J]. 储能科学与技术, 2024, 13(9): 3161-3181. |
[9] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[10] | 许晶, 王宇琦, 符晓, 杨其凡, 连景臣, 王力奇, 肖睿娟. 基于大数据的电池新材料设计[J]. 储能科学与技术, 2024, 13(9): 2920-2932. |
[11] | 钟逸, 冷彦, 陈思慧, 李培义, 邹智, 刘洋, 万佳雨. 基于大语言模型RAG架构的电池加速研究:现状与展望[J]. 储能科学与技术, 2024, 13(9): 3214-3225. |
[12] | 刘子玉, 姜泽坤, 邱伟, 徐泉, 牛迎春, 徐春明, 周天航. 人工智能在长时液流电池储能中的应用:性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
[13] | 朱文韬, 周杨, 徐艺敏, 施涛. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. |
[14] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[15] | 孙健, 陶建龙, 胡芸蓉, 蔡潇龙, 杨勇平. 基于热泵型储电技术国内外研究综述[J]. 储能科学与技术, 2024, 13(6): 1963-1976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||