储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 467-478.doi: 10.19799/j.cnki.2095-4239.2025.0189

• 热点点评 • 上一篇    下一篇

DeepSeek在储能研究中的应用前景展望

高宇辰(), 李蔚林(), 陈翔(), 袁誉杭, 牛艺琳, 张强()   

  1. 清华大学化学工程系,复合固态电池北京市重点实验室,绿电化工研究中心,北京 100084
  • 收稿日期:2025-02-28 修回日期:2025-03-03 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 陈翔,张强 E-mail:gyc22@mails.tsinghua.edu.cn;liwl22@mails.tsinghua.edu.cn;xiangchen@mail.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
  • 作者简介:高宇辰(2000—),男,博士研究生,研究方向为锂电池材料人工智能研究,E-mail:gyc22@mails.tsinghua.edu.cn
    李蔚林(2004—),男,本科生,研究方向为锂键化学与人工智能,E-mail:liwl22@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(T2322015);国家重点研发计划项目(2021YFB2500300);科学探索奖

A perspective on DeepSeek application in energy storage research

Yuchen GAO(), Weilin LI(), Xiang CHEN(), Yuhang YUAN, Yilin NIU, Qiang ZHANG()   

  1. Beijing Key Laboratory of Complex Solid State Batteries and Tsinghua Center for Green Chemical Engineering Electrification (CCEE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2025-02-28 Revised:2025-03-03 Online:2025-02-28 Published:2025-03-18
  • Contact: Xiang CHEN, Qiang ZHANG E-mail:gyc22@mails.tsinghua.edu.cn;liwl22@mails.tsinghua.edu.cn;xiangchen@mail.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn

摘要:

在现代能源体系中,化石能源正逐步向可再生能源转型,能源存储将成为新型电力系统的关键调节单元,但这一进程面临研发低效、系统优化复杂、安全管控滞后以及市场机制不完善等多重挑战。深度求索(DeepSeek)大模型凭借其低能耗、高能效以及卓越的推理能力,为突破储能领域关键瓶颈开辟了新路径。DeepSeek通过采用多头潜在注意力、混合专家模型及多词元预测等核心技术,显著降低了模型训练与推理的能耗成本,展现出在储能研究领域的广泛应用前景,有望推动材料研发从“经验试错”到“智能设计”的范式跃迁,在系统优化中构建多尺度耦合的数字孪生底座,在安全管控中推动被动响应向主动预警的模式转型,在政策分析中建立数据驱动的市场动态评估体系。本文提出“系统共生、能效共进”的发展模式,为人工智能与清洁能源技术的深度融合构建了技术基座,有望加速零碳算力基础设施的构建,引领储能技术迈向智能化新纪元。

关键词: 深度求索大模型, 大语言模型, 人工智能, 储能技术

Abstract:

During the global energy system's transition to renewable energy, energy storage technology has emerged as the core regulatory unit of new power systems, yet it faces multifaceted challenges, including inefficient material development, complex system optimization, lagging safety management, and imperfect market mechanisms. The DeepSeek large language model, with its low energy consumption, high efficiency, and exceptional reasoning capabilities, proffers an innovative pathway to address critical bottlenecks in energy storage. Through core technologies such as multi-head latent attention, DeepSeek mixture-of-experts models, and multi-token prediction, DeepSeek significantly reduces energy costs in both model training and inference. Its broad application prospects in energy storage research are expected to drive a paradigm shift from “trial-and-error” to “intelligent design” in materials development, establish multi-scale coupled digital twin frameworks for system optimization, transform safety management from passive response to proactive early warning, and create data-driven dynamic market evaluation systems for policy analysis. The “system symbiosis and energy-efficiency co-evolution” development paradigm provides a technological foundation for the deep integration of artificial intelligence with clean energy technologies, potentially accelerating the construction of carbon-neutral computing infrastructure and ushering energy storage technology into an intelligent new era.

Key words: DeepSeek, large language model, artificial intelligence, energy storage technology

中图分类号: