储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 2920-2932.doi: 10.19799/j.cnki.2095-4239.2024.0565
许晶(), 王宇琦, 符晓, 杨其凡, 连景臣, 王力奇, 肖睿娟()
收稿日期:
2024-06-21
修回日期:
2024-08-22
出版日期:
2024-09-28
发布日期:
2024-09-20
通讯作者:
肖睿娟
E-mail:xujing202@mails.ucas.ac.cn;rjxiao@iphy.ac.cn
作者简介:
许晶(1997—),女,博士研究生,研究方向为机器学习在电池材料理论设计中的应用,E-mail:xujing202@mails.ucas.ac.cn;
基金资助:
Jing XU(), Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO()
Received:
2024-06-21
Revised:
2024-08-22
Online:
2024-09-28
Published:
2024-09-20
Contact:
Ruijuan XIAO
E-mail:xujing202@mails.ucas.ac.cn;rjxiao@iphy.ac.cn
摘要:
固态电池是极具潜力的下一代储能器件之一,寻找综合性能优异的电池材料有望从根本上提升电池的性能。本文围绕固态电池中离子传输、表面/界面现象以及微观结构动态演化等关键科学问题,介绍了基于多精度传递思想的高通量材料筛选策略,以及机器学习技术在加速模拟复杂物理化学过程、解析电池内部复杂构效关系的突出作用。受益于多精度传递思想和机器学习技术的应用,可以从直接筛选、元素替换、结构单元搭建、非晶结构构建等多个角度高效获得快离子导体材料,多维度解析离子传输性能与微观机制,极大丰富了电极材料、固态电解质材料等候选范围。此外,针对电池材料研发流程的云工具箱提供了数据归档、分析及复用等多项功能,旨在使得借助大数据和人工智能的材料研发流程更为自动化。本文介绍的基于大数据的研究思路和研究模式,结合新兴的机器学习技术,能够有效加速新型电池材料的设计和开发进程,深化对电池内部复杂物理化学现象的理解,为设计实用的新型固态电池材料赋能。
中图分类号:
许晶, 王宇琦, 符晓, 杨其凡, 连景臣, 王力奇, 肖睿娟. 基于大数据的电池新材料设计[J]. 储能科学与技术, 2024, 13(9): 2920-2932.
Jing XU, Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO. Discovery of new battery materials based on a big data approach[J]. Energy Storage Science and Technology, 2024, 13(9): 2920-2932.
1 | WU D X, CHEN L Q, LI H, et al. Recent progress of solid-state lithium batteries in China[J]. Applied Physics Letters, 2022, 121(12): 120502. DOI: 10.1063/5.0117248. |
2 | HUANG Y L, CAO B W, GENG Z, et al. Advanced electrolytes for rechargeable lithium metal batteries with high safety and cycling stability[J]. Accounts of Materials Research, 2024, 5(2): 184-193. DOI: 10.1021/accountsmr.3c00232. |
3 | WU D X, CHEN L Q, LI H, et al. Solid-state lithium batteries-from fundamental research to industrial progress[J]. Progress in Materials Science, 2023, 139: 101182. DOI: 10.1016/j.pmatsci. 2023.101182. |
4 | WU E A, BANERJEE S, TANG H M, et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries[J]. Nature Communications, 2021, 12(1): 1256. DOI: 10.1038/s41467-021-21488-7. |
5 | MIAO X, GUAN S D, MA C, et al. Role of interfaces in solid-state batteries[J]. Advanced Materials, 2023, 35(50): 2206402. DOI: 10.1002/adma.202206402. |
6 | LUO Z, QIU X J, LIU C, et al. Interfacial challenges towards stable Li metal anode[J]. Nano Energy, 2021, 79: 105507. DOI: 10.1016/j.nanoen.2020.105507. |
7 | SHEN X H, TIAN Z Y, FAN R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090. DOI: 10.1016/j.jechem.2017.12.012. |
8 | NAM H G, PARK J Y, YUK J M, et al. Phase transformation mechanism and stress evolution in Sn anode[J]. Energy Storage Materials, 2022, 45: 101-109. DOI: 10.1016/j.ensm.2021.11.034. |
9 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. DOI: 10.1021/cm901452z. |
10 | CHEN L H, VENKATRAM S, KIM C, et al. Electrochemical stability window of polymeric electrolytes[J]. Chemistry of Materials, 2019, 31(12): 4598-4604. DOI: 10.1021/acs.chemmater.9b01553. |
11 | ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9): 3253-3266. DOI: 10.1039/C5TA08574H. |
12 | GU L, ZHU C B, LI H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution[J]. Journal of the American Chemical Society, 2011, 133(13): 4661-4663. DOI: 10.1021/ja109412x. |
13 | ONUMA H, KUBOTA K, MURATSUBAKI S, et al. Phase evolution of electrochemically potassium intercalated graphite[J]. Journal of Materials Chemistry A, 2021, 9(18): 11187-11200. DOI: 10.1039/D0TA12607A. |
14 | HE Z Y, ZHANG C X, ZHU Y K, et al. The acupuncture effect of carbon nanotubes induced by the volume expansion of silicon-based anodes[J]. Energy & Environmental Science, 2024, 17(10): 3358-3364. DOI: 10.1039/D4EE00710G. |
15 | NOMURA Y, YAMAMOTO K, YAMAGISHI Y, et al. Lithium transport pathways guided by grain architectures in Ni-rich layered cathodes[J]. ACS Nano, 2021, 15(12): 19806-19814. DOI: 10.1021/acsnano.1c07252. |
16 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. DOI: 10.1038/nmat4369. |
17 | 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592. |
LIU Z D, PAN J J, LIU Q B. Application of machine learning in the design of cathode materials and electrolytes for high-performance lithium batteries[J]. Progress in Chemistry, 2023, 35(4): 577-592. | |
18 | XIAO R J, LI H, CHEN L Q. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory[J]. Scientific Reports, 2015, 5: 14227. DOI: 10.1038/srep14227. |
19 | ADAMS S, RAO R P. High power lithium ion battery materials by computational design[J]. Physica Status Solidi (a), 2011, 208(8): 1746-1753. DOI: 10.1002/pssa.201001116. |
20 | CHEN H M, ADAMS S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests[J]. IUCrJ, 2017, 4(5): 614-625. DOI: 10.1107/s2052252517010211. |
21 | WANG Y Q, SUN X R, XIAO R J, et al. Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials[J]. Chinese Physics B, 2020, 29(3): 038202. DOI: 10.1088/1674-1056/ab7186. |
22 | HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. 2000, 113(22): 9901-9904. DOI: 10. 1063/1.1329672. |
23 | RONG Z Q, KITCHAEV D, CANEPA P, et al. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials[J]. 2016, 145(7): 074112. DOI: 10. 1063/1.4960790. |
24 | HE X F, ZHU Y Z, EPSTEIN A, et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations[J]. NPJ Computational Materials, 2018, 4: 18. DOI: 10.1038/s41524-018-0074-y. |
25 | WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie International Edition, 2019, 58(24): 8039-8043. DOI: 10.1002/anie.201901938. |
26 | WANG Y Q, WU S Y, SHAO W, et al. Accelerated strategy for fast ion conductor materials screening and optimal doping scheme exploration[J]. Journal of Materiomics, 2022, 8(5): 1038-1047. DOI: 10.1016/j.jmat.2022.02.010. |
27 | BARTÓK A P, KONDOR R, CSÁNYI G. On representing chemical environments[J]. Physical Review B, 2013, 87(18): 184115. DOI: 10.1103/physrevb.87.184115. |
28 | BOTU V, RAMPRASAD R. Learning scheme to predict atomic forces and accelerate materials simulations[J]. Physical Review B, 2015, 92(9): 094306. DOI: 10.1103/physrevb.92.094306. |
29 | WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184. DOI: 10.1016/j.cpc.2018.03.016. |
30 | DENG B W, ZHONG P C, JUN K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling[J]. Nature Machine Intelligence, 2023, 5: 1031-1041. DOI: 10.1038/s42256-023-00716-3. |
31 | BATZNER S, MUSAELIAN A, SUN L X, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials[J]. Nature Communications, 2022, 13: 2453. DOI: 10.1038/s41467-022-29939-5. |
32 | BEHLER J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials[J]. Journal of Chemical Physics, 2011, 134(7): 074106. DOI: 10.1063/1.3553717. |
33 | BEHLER J. Four generations of high-dimensional neural network potentials[J]. Chemical Reviews, 2021, 121(16): 10037-10072. DOI: 10.1021/acs.chemrev.0c00868. |
34 | GASTEGGER M, SCHWIEDRZIK L, BITTERMANN M, et al. WACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials[J]. Journal of Chemical Physics, 2018, 148(24): 241709. DOI: 10.1063/1.5019667. |
35 | XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Physical Review Letters, 2018, 120(14): 145301. DOI: 10.1103/PhysRevLett.120.145301. |
36 | LIU Y, YANG Z W, ZOU X X, et al. Data quantity governance for machine learning in materials science[J]. National Science Review, 2023, 10(7): nwad125. DOI: 10.1093/nsr/nwad125. |
37 | LIU Y S, HE X F, MO Y F. Discrepancies and error evaluation metrics for machine learning interatomic potentials[J]. NPJ Computational Materials, 2023, 9: 174. DOI: 10.1038/s41524-023-01123-3. |
38 | MUSAELIAN A, BATZNER S, JOHANSSON A, et al. Learning local equivariant representations for large-scale atomistic dynamics[J]. Nature Communications, 2023, 14(1): 579. DOI: 10. 1038/s41467-023-36329-y. |
39 | XIAO R J, LI H, CHEN L Q. High-throughput computational discovery of K2CdO2 as an ion conductor for solid-state potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5157-5162. DOI: 10.1039/C9TA13105A. |
40 | HE J G, YAO Z P, HEGDE V I, et al. Computational discovery of stable heteroanionic oxychalcogenides ABXO (A, B = metals; X = S, Se, and Te) and their potential applications[J]. Chemistry of Materials, 2020, 32(19): 8229-8242. DOI: 10.1021/acs.chemmater.0c01902. |
41 | FU X, WANG Y Q, XU J, et al. First-principles study on a new chloride solid lithium-ion conductor material with high ionic conductivity[J]. Journal of Materials Chemistry A, 2024, 12(17): 10562-10570. DOI: 10.1039/D3TA07943K. |
42 | WANG X L, XIAO R J, LI H, et al. Oxysulfide LiAlSO: A lithium superionic conductor from first principles[J]. Physical Review Letters, 2017, 118(19): 195901. DOI: 10.1103/PhysRevLett.118.195901. |
43 | WANG Y C, LV J, ZHU L, et al. CALYPSO: A method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070. DOI: 10.1016/j.cpc.2012.05.008. |
44 | XU J, WANG Y Q, WU S Y, et al. New halide-based sodium-ion conductors Na3Y2Cl9 inversely designed by building block construction[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 21086-21096. DOI: 10.1021/acsami.3c01570. |
45 | WAROQUIERS D, GONZE X, RIGNANESE G M, et al. Statistical analysis of coordination environments in oxides[J]. Chemistry of Materials, 2017, 29(19): 8346-8360. DOI: 10.1021/acs.chemmater.7b02766. |
46 | WU S Y, XIAO R J, LI H, et al. Ionic conductivity of LiSiON and the effect of amorphization/heterovalent doping on Li+ diffusion[J]. Inorganics, 2022, 10(4): 45. DOI: 10.3390/inorganics10040045. |
47 | LIN L Y, GUO W, LI M J, et al. Progress and perspective of glass-ceramic solid-state electrolytes for lithium batteries[J]. Materials, 2023, 16(7): 2655. DOI: 10.3390/ma16072655. |
48 | DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nature Energy, 2023, 8: 1221-1228. DOI: 10.1038/s41560-023-01356-y. |
49 | XU J, XIAO R, LI H. ESM cloud toolkit: A copilot for energy storage material research[J]. Chinese Physics Letters, 2024, 41(5): 054701. DOI: 10.1088/0256-307x/41/5/054701. |
50 | 王丹, 周明波, 黄东宸, 等. 凝聚态物质科学科研数据管理与应用[J]. 科学通报, 2024, 69(9): 1164-1174. |
WANG D, ZHOU M B, HUANG D C, et al. Management and application of research data in condensed matter science[J]. Chinese Science Bulletin, 2024, 69(9): 1164-1174. | |
51 | LIU Y, LIU D H, GE X Y, et al. A high-quality dataset construction method for text mining in materials science[J]. Acta Physica Sinica, 2023, 72(7): 070701. DOI: 10.7498/aps.72.20222316. |
52 | 刘悦, 邹欣欣, 杨正伟, 等. 材料领域知识嵌入的机器学习[J]. 硅酸盐学报, 2022, 50(3): 863-876. DOI: 10.14062/j.issn.0454-5648. 20220093. |
LIU Y, ZOU X X, YANG Z W, et al. Machine learning embedded with materials domain knowledge[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 863-876. DOI: 10.14062/j.issn. 0454-5648.20220093. |
[1] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[2] | 黄家辉, 邝祝芳. 人工智能与储能技术融合的前沿发展[J]. 储能科学与技术, 2024, 13(9): 3161-3181. |
[3] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[4] | 刘子玉, 姜泽坤, 邱伟, 徐泉, 牛迎春, 徐春明, 周天航. 人工智能在长时液流电池储能中的应用:性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
[5] | 邓斌, 华海明, 张与之, 王晓旭, 张林峰. 深度势能方法及其在电化学储能材料中的应用[J]. 储能科学与技术, 2024, 13(9): 2884-2906. |
[6] | 方晖. 网络分析模式下低温锂电池储能系统功能安全保障策略[J]. 储能科学与技术, 2024, 13(7): 2447-2449. |
[7] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[8] | 杨立杰. 相变储能材料在建筑工程建设中的应用[J]. 储能科学与技术, 2024, 13(5): 1471-1473. |
[9] | 史玲华, 吴松丽. 大数据型热储存系统的能量存储安全性[J]. 储能科学与技术, 2024, 13(5): 1603-1605. |
[10] | 吴思远, 李泓. 发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型[J]. 储能科学与技术, 2024, 13(4): 1216-1224. |
[11] | 李永娜. 大数据技术在大规模储能电池管理系统中的应用[J]. 储能科学与技术, 2024, 13(4): 1353-1355. |
[12] | 张雪丽, 孙伟清, 郑君华. 聚氨酯型固-固相变储能材料对沥青调温效果的影响研究[J]. 储能科学与技术, 2024, 13(3): 841-843. |
[13] | 裴雯. 海上物流中相变储能材料的制备与热物性能分析[J]. 储能科学与技术, 2024, 13(3): 844-846. |
[14] | 牛红培. 相变储能材料在节能建筑设计中的应用[J]. 储能科学与技术, 2024, 13(3): 847-849. |
[15] | 李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||