| 1 | GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057. | 
																													
																						| 2 | LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806. | 
																													
																						| 3 | 刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015. | 
																													
																						|  | LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015. | 
																													
																						| 4 | KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: 228861. DOI:10.1016/j.jpowsour.2020.228861. | 
																													
																						| 5 | EL MEJDOUBI A, CHAOUI H, GUALOUS H, et al. Lithium-ion batteries health prognosis considering aging conditions[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6834-6844. | 
																													
																						| 6 | YU J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering & System Safety, 2018, 174: 82-95. | 
																													
																						| 7 | RAZAVI-FAR R, CHAKRABARTI S, SAIF M, et al. An integrated imputation-prediction scheme for prognostics of battery data with missing observations[J]. Expert Systems with Applications, 2019, 115: 709-723. DOI:10.1016/j.eswa.2018.08.033. | 
																													
																						| 8 | ALI M U, ZAFAR A, NENGROO S H, et al. Online remaining useful life prediction for lithium-ion batteries using partial discharge data features[J]. Energies, 2019, 12(22): 4366. | 
																													
																						| 9 | BAI G X, WANG P F, HU C. A self-cognizant dynamic system approach for prognostics and health management[J]. Journal of Power Sources, 2015, 278: 163-174. | 
																													
																						| 10 | TANG X P, YAO K, ZOU C F, et al. Predicting battery aging trajectory via a migrated aging model and Bayesian Monte Carlo method[J]. Energy Procedia, 2019, 158: 2456-2461. | 
																													
																						| 11 | WANG F K, HUANG C Y, MAMO T. Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries[J]. Applied Sciences, 2020, 10(10): 3549. | 
																													
																						| 12 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI:10.1109/TVT.2018.2805189. | 
																													
																						| 13 | 魏腾飞, 潘庭龙. 基于改进PSO优化LSTM网络的短期电力负荷预测[J]. 系统仿真学报, 2021, 33(8): 1866-1874. DOI: 10.16182/j.issn1004731x.joss.20-0297. | 
																													
																						|  | WEI T F, PAN T L. Short-term power load forecasting based on LSTM neural network optimized by improved PSO[J]. Journal of System Simulation, 2021, 33(8): 1866-1874. | 
																													
																						| 14 | LI S, FANG H J, SHI B. Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression[J]. Reliability Engineering & System Safety, 2021, 210: 107542. DOI:10.1016/j.ress.2021.107542. | 
																													
																						| 15 | 常春, 王瑛琦, 姜久春, 等. 基于主动方波激励检测锂离子电池早期内短路[J]. 电池, 2024, 54(1): 24-28. DOI:10.19535/j.1001-1579. 2024.01.006. | 
																													
																						|  | CHANG C, WANG Y Q, JIANG J C, et al. Detection of early internal short circuit of Li-ion battery based on active square wave excitation[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 24-28. DOI:10.19535/j.1001-1579.2024.01.006. | 
																													
																						| 16 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI:10.1016/j.advengsoft.2016.01.008. | 
																													
																						| 17 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:10.1162/neco.1997.9.8.1735. | 
																													
																						| 18 | SHI Y M, TIAN Y H, WANG Y W, et al. Learning long-term dependencies for action recognition with a biologically-inspired deep network[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 716-725. DOI:10.1109/ICCV.2017.84. |