储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 2054-2056.doi: 10.19799/j.cnki.2095-4239.2024.0455

• 储能测试与评价 • 上一篇    下一篇

基于深度学习的锂电池故障分析及应用

时海欧1,2()   

  1. 1.濮阳职业技术学院
    2.河南大学濮阳工学院,河南 濮阳 457000
  • 收稿日期:2024-05-23 修回日期:2024-06-12 出版日期:2024-06-28 发布日期:2024-06-26
  • 作者简介:时海欧(1984—),女,硕士,讲师,研究方向为计算机,E-mail:pzyshihaiou@126.com
  • 基金资助:
    2024年度濮阳职业技术学院校级课题(2024PZYKY28)

Fault analysis and application of lithium battery based on deep learning

Haiou SHI1,2()   

  1. 1.Puyang Vocational and Technical College
    2.Puyang Institute of Technology, Henan University, Puyang 457000, Henan, China
  • Received:2024-05-23 Revised:2024-06-12 Online:2024-06-28 Published:2024-06-26

摘要:

锂电池储能在清洁能源使用、电动汽车、移动设备以及再生能源存储领域都有极其重要的作用。一旦出现故障很容易引起一系列问题,所以对其进行故障分析,了解其实时健康状态具有重要意义。本文对深度学习机制下的锂电池故障分析技术进行综述。在深入了解包括多层感知、循环神经网络等深度学习诊断理论的基础上,阐述了最新的锂电池故障诊断模型(LSTM)的评估框架及流程。通过实际应用可以判定基于深度学习的锂电池故障分析模型具有可循环性高、精确度好等优点,值得更深入的研究探讨。

关键词: 深度学习, 锂电池, 评估模型

Abstract:

Lithium ion battery energy storage plays an extremely important role in the fields of clean energy use, electric vehicles, mobile devices, and renewable energy storage. Once a malfunction occurs, it is easy to cause a series of problems, so conducting fault analysis to understand its actual health status is of great significance. This article provides an overview of lithium battery fault analysis techniques under deep learning mechanisms. Based on a deep understanding of deep learning diagnostic theories such as multi-layer perception and recurrent neural networks, this paper elaborates on the evaluation framework and process of the latest lithium battery fault diagnosis model (LSTM). Through practical applications, it can be determined that the deep learning based lithium battery fault analysis model has advantages such as high recyclability and good accuracy, and is worthy of further research and exploration.

Key words: deep learning, lithium batteries, evaluation model

中图分类号: