1 |
刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430.
|
|
LIU W, LI Z M, LIU M Y, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430.
|
2 |
金波, 李明佳, 徐阳, 等. 双层填充床储热器储热性能实验研究[J]. 西安交通大学学报, 2018, 52(7): 80-86.
|
|
JIN B, LI M J, XU Y, et al. Experimental study on the thermal performance of a thermal storage with double-layered packed bed[J]. Journal of Xi'an Jiaotong University, 2018, 52(7): 80-86.
|
3 |
ARAMESH M, SHABANI B. Metal foams application to enhance the thermal performance of phase change materials: A review of experimental studies to understand the mechanisms[J]. Journal of Energy Storage, 2022, 50: 104650.
|
4 |
MOURAD A, AISSA A, SAID Z, et al. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review[J]. Journal of Energy Storage, 2022, 49: 104186.
|
5 |
CHANG Y W, YAO X Y, CHEN Y Y, et al. Review on ceramic-based composite phase change materials: Preparation, characterization and application[J]. Composites Part B: Engineering, 2023, 254: 110584.
|
6 |
LIU L S, HAMMAMI N, TROVALET L, et al. Description of phase change materials (PCMs) used in buildings under various climates: A review[J]. Journal of Energy Storage, 2022, 56: 105760.
|
7 |
BABU SANKER S, RAJESH B. Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers[J]. Journal of Energy Storage, 2022, 50: 104606.
|
8 |
AGRAWAL R, SINGH K D P, SHARMA R K. Experimental investigations on the phase change and thermal properties of nano enhanced binary eutectic phase change material of palmitic acid-stearic acid/CuO nanoparticles for thermal energy storage[J]. International Journal of Energy Research, 2022, 46(5): 6562-6576.
|
9 |
WANG J, LI Y X, WANG Y, et al. Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites[J]. Solar Energy, 2020, 211: 928-937.
|
10 |
AMUDHALAPALLI G K, DEVANURI J K. Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials—A comprehensive review[J]. Thermal Science and Engineering Progress, 2022, 28: 101049.
|
11 |
ARIF F M, PANDEY A K, SAMYKANO M, et al. Thermal conductivity, reliability, and stability assessment of phase change material (PCM) doped with functionalized multi-wall carbon nanotubes (FMWCNTs)[J]. Journal of Energy Storage, 2022, 50: 104676.
|
12 |
REJI K R, PANDEY A K, SAMYKANO M, et al. Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material[J]. Journal of Energy Storage, 2022, 55: 105654.
|
13 |
SAMI S, ETESAMI N. Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage[J]. Applied Thermal Engineering, 2017, 124: 346-352.
|
14 |
LIU X, RAO Z H. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material[J]. Thermochimica Acta, 2017, 647: 15-21.
|
15 |
PUTRA N, RAWI S, AMIN M, et al. Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage[J]. Journal of Energy Storage, 2019, 21: 32-39.
|
16 |
ZHAO C, TAO Y, YU Y. Molecular dynamics simulation of thermal and phonon transport characteristics of nanocomposite phase change material[J]. Journal of Molecular Liquids, 2021, 329: 115448.
|
17 |
ZHAO C, TAO Y, YU Y. Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation[J]. Energy, 2022, 242: 123033.
|
18 |
SCHMID N, EICHENBERGER A P, CHOUTKO A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7[J]. European Biophysics Journal, 2011, 40(7): 843-856.
|
19 |
MARANO J J, HOLDER G D. A general equation for correlating the thermophysical properties of n-paraffins, n-olefins, and other homologous series. 3. asymptotic behavior correlations for thermal and transport properties[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 2399-2408.
|
20 |
V\'ELEZ C, KHAYET M, ORTIZ DE Z\'ARATE J M. Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-hexadecane, n-octadecane and n-eicosane[J]. Applied Energy, 2015, 143: 383-394.
|
21 |
PRAKASH V, DIWAN, NIYOGI. Characterization of synthesized copper oxide nanopowders and their use in nanofluids for enhancement of thermal conductivity[J]. Indian Journal of Pure & Applied Physics, 2015, 53(11): 753-758.
|
22 |
DHAIDAN N S, KHODADADI J M, AL-HATTAB T A, et al. Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux[J]. International Journal of Heat and Mass Transfer, 2013, 67: 523-534.
|
23 |
HO C J, GAO J Y. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material[J]. International Communications in Heat and Mass Transfer, 2009, 36(5): 467-470.
|
24 |
MOTAHAR S, NIKKAM N, ALEMRAJABI A A, et al. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles[J]. International Communications in Heat and Mass Transfer, 2014, 59: 68-74.
|
25 |
ÁGUILA V B, VASCO D A, GALVEZ P P, et al. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1009-1019.
|
26 |
AHANGARAN F, NAVARCHIAN A H. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review[J]. Advances in Colloid and Interface Science, 2020, 286: 102298.
|
27 |
SHRESTHA S, WANG B, DUTTA P. Nanoparticle processing: Understanding and controlling aggregation[J]. Advances in Colloid and Interface Science, 2020, 279: 102162.
|