1 |
CHEN J, ADIT G, LI L, et al. Optimization strategies toward functional sodium-ion batteries[J]. Energy & Environmental Materials, 2023, 6(4): e12633.
|
2 |
SADA K, DARGA J, MANTHIRAM A. Challenges and prospects of sodium-ion and potassium-ion batteries for mass production[J]. Advanced Energy Materials, 2023, 13(39): 2302321.
|
3 |
LI L, ZHENG Y, ZHANG S L, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340.
|
4 |
DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137.
|
5 |
CHEN L, FIORE M, WANG J E, et al. Readiness level of sodium-ion battery technology: A materials review[J]. Advanced Sustainable Systems, 2018, 2(3): 1700153.
|
6 |
KIM H, KIM H, DING Z, et al. Recent progress in electrode materials for sodium-ion batteries [J]. Advanced Energy Materials, 2016, 6(19): 1600943.
|
7 |
SUN Y, GUO S H, ZHOU H S. Exploration of advanced electrode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9(23): 1800212.
|
8 |
QIAO S Y, ZHOU Q W, MA M, et al. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252.
|
9 |
HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898.
|
10 |
LI Y F, KONG M H, HU J P, et al. Carbon-microcuboid-supported phosphorus-coordinated single atomic copper with ultrahigh content and its abnormal modification to Na storage behaviors[J]. Advanced Energy Materials, 2020, 10(19): 2000400.
|
11 |
YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(2): 1701785.
|
12 |
LI D, ZHOU J S, CHEN X H, et al. Amorphous Fe2O3/graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30899-30907.
|
13 |
LAO M M, ZHANG Y, LUO W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622.
|
14 |
LI D, LIU H H, LIU Z J, et al. Copper oxide nitrogen-rich porous carbon network boosts high-performance supercapacitors[J]. Metals, 2023, 13(5): 981.
|
15 |
LIU H H, LI D, LIU H L, et al. CoSe2 nanoparticles anchored on porous carbon network structure for efficient Na-ion storage[J]. Journal of Colloid and Interface Science, 2023, 634: 864-873.
|
16 |
LIU H H, LI D, LIU H L, et al. Devisable three-dimensional Cu2Se nanoarrays boosts high rate Na-ion storage[J]. Applied Surface Science, 2023, 612: 155725.
|
17 |
LI D, LIU H L, LIU H H, et al. A NiCoSex/CG heterostructure with strong interfacial interaction showing rapid diffusion kinetics as a flexible anode for high-rate sodium storage[J]. Dalton Transactions, 2023, 52(16): 5192-5201.
|
18 |
LI D, ZHOU J S, CHEN X H, et al. Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22841-22850.
|
19 |
WEI S W, LI W, MA Z Z, et al. Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb composite anodes for high-performance sodium-ion batteries[J]. Small, 2023, 19(46): e2304265.
|
20 |
UD DIN M A, LI C, ZHANG L H, et al. Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries[J]. Materials Today Physics, 2021, 21: 100486.
|
21 |
ZHANG X S, QIU X Q, LIN J X, et al. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries[J]. Small, 2023, 19(35): e2302071.
|
22 |
FU L J, TANG K, SONG K P, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3): 1384-1389.
|
23 |
CHEN L, HE X J, CHEN H M, et al. N-doped carbon encapsulating Bi nanoparticles derived from metal-organic frameworks for high-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(38): 22048-22055.
|
24 |
LI D, HU J P, WANG C, et al. Metal-organic framework-induced edge-riched growth of layered Bi2Se3 towards ultrafast Na-ion storage[J]. Journal of Power Sources, 2023, 555: 232387.
|
25 |
LI D, ZHOU J S, CHEN X H, et al. Graphene-loaded Bi2Se3: A conversion-alloying-type anode material for ultrafast gravimetric and volumetric Na storage[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30379-30387.
|
26 |
LIU H L, LI D, LIU H H, et al. Binary self-assembly of ordered Bi4Se3/Bi2O2Se lamellar architecture embedded into CNTs@graphene as a binder-free electrode for superb Na-ion storage[J]. Journal of Colloid and Interface Science, 2022, 620: 168-178.
|
27 |
XUE P, WANG N N, FANG Z W, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries[J]. Nano Letters, 2019, 19(3): 1998-2004.
|
28 |
CHEN J, FAN X L, JI X, et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1218-1225.
|
29 |
LIU S N, LUO Z G, GUO J H, et al. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries[J]. Electrochemistry Communications, 2017, 81: 10-13.
|
30 |
WANG L B, WANG C C, LI F J, et al. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries[J]. Chemical Communications, 2017, 54(1): 38-41.
|
31 |
HOU B H, WANG Y Y, NING Q L, et al. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism[J]. Advanced Materials, 2019, 31(40): e1903125.
|
32 |
WANG L B, VOSKANYAN A A, CHAN K Y, et al. Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery[J]. ACS Applied Energy Materials, 2020, 3(1): 565-572.
|
33 |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
|
34 |
XIAO Y H, ZHAO X B, WANG X Z, et al. A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage[J]. Advanced Energy Materials, 2020, 10(25): 2000666.
|
35 |
ZHANG K, HU Z, LIU X, et al. FeSe2 microspheres as a high-performance anode material for Na-ion batteries[J]. Advanced Materials, 2015, 27(21): 3305-3309.
|
36 |
CAI D, LIU B K, ZHU D H, et al. Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium sulfur batteries[J]. Advanced Energy Materials, 2020, 10(19): 1904273.
|
37 |
FAN L L, LI X F, YAN B, et al. Controlled SnO2 crystallinity effectively dominating sodium storage performance[J]. Advanced Energy Materials, 2016, 6(10): 1502057.
|
38 |
YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248.
|
39 |
JIAN Z L, XING Z Y, BOMMIER C, et al. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3): 1501874.
|
40 |
LI Z, ZHANG J T, LU Y, et al. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances[J]. Science Advances, 2018, 4(6): eaat1687.
|