储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2649-2664.doi: 10.19799/j.cnki.2095-4239.2024.0180
收稿日期:
2024-03-04
修回日期:
2024-05-07
出版日期:
2024-08-28
发布日期:
2024-08-15
通讯作者:
盖建丽
E-mail:yaoyuan@aesit.com.cn;gaijl669@126.com
作者简介:
姚远(1996—),男,硕士,研究方向为二次电池电解液开发及失效分析,E-mail:yaoyuan@aesit.com.cn;
基金资助:
Yuan YAO(), Ruoqi ZONG, Jianli GAI()
Received:
2024-03-04
Revised:
2024-05-07
Online:
2024-08-28
Published:
2024-08-15
Contact:
Jianli GAI
E-mail:yaoyuan@aesit.com.cn;gaijl669@126.com
摘要:
钠离子电池技术因钠资源的储量优势和制造过程中的成本优势引起了广泛关注。以硬碳为代表的碳材料是目前最常用的负极材料,但其较低的理论容量限制了钠离子电池能量密度的提升。锑和铋可通过与钠离子发生可逆的合金化反应实现储钠,具有高理论容量、高稳定性和高电导率,是极具潜力的新型负极材料。但由于不同合金相间的体积差异,锑和铋的钠化/脱钠过程伴随较大的体积膨胀,表现出结构稳定性较差、电极界面膜破坏、电解液持续消耗等问题,限制了产业化应用进程。本文综述了锑基及铋基金属负极材料的储钠机理、改性策略及方法。目前锑基及铋基金属负极材料的改性策略主要有调控结构和构建复合材料两种:通过调控结构策略可以减小颗粒尺寸、调整颗粒形貌,利用纳米效应减小材料应变;通过构建复合材料策略,可以将合金型负极与碳基材料等复合,利用核壳等特殊结构缓冲体积变化。此外,本文以铋锑合金为例对二元合金负极进行了介绍。最后,对复合材料的设计、规模化制造方法的开发、界面特性的研究等未来的研究方向进行了展望。
中图分类号:
姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664.
Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a. |
2 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013. DOI: 10.1038/natrevmats.2018.13. |
3 | USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6: 1020-1035. DOI: 10.1038/s41578-021-00324-w. |
4 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. DOI: 10.19799/j.cnki.2095-4239.2020.0130. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. DOI: 10.19799/j.cnki.2095-4239.2020.0130. | |
5 | 孙畅, 邓泽荣, 江宁波, 等. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. DOI: 10.19799/j.cnki.2095-4239.2021.0719. |
SUN C, DENG Z R, JIANG N B, et al. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. DOI: 10.19799/j.cnki.2095-4239. 2021.0719. | |
6 | 陈娜, 李安琪, 郭子祥, 等. 钠离子电池普鲁士蓝材料结构构建及优化的研究进展[J]. 储能科学与技术, 2023, 12(11): 3340-3351. DOI: 10.19799/j.cnki.2095-4239.2023.0467. |
CHEN N, LI A Q, GUO Z X, et al. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351. DOI: 10.19799/j.cnki.2095-4239.2023.0467. | |
7 | 刘飞, 赵培文, 赵经香, 等. 钠离子电池硬碳负极材料研究进展[J]. 储能科学与技术, 2022, 11(11): 3497-3509. DOI: 10.19799/j.cnki.2095-4239.2022.0233. |
LIU F, ZHAO P W, ZHAO J X, et al. Research progress of hard carbon anode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. DOI: 10.19799/j.cnki.2095-4239.2022.0233. | |
8 | LIU Z G, LU Z Y, GUO S H, et al. Toward high performance anodes for sodium-ion batteries: From hard carbons to anode-free systems[J]. ACS Central Science, 2023, 9(6): 1076-1087. DOI: 10.1021/acscentsci.3c00301. |
9 | TAN H T, CHEN D, RUI X H, et al. Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities[J]. Advanced Functional Materials, 2019, 29(14): 1808745. DOI: 10.1002/adfm.201808745. |
10 | TIAN W F, ZHANG S L, HUO C X, et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries[J]. ACS Nano, 2018, 12(2): 1887-1893. DOI: 10.1021/acsnano.7b08714. |
11 | 李莹, 来雪琦, 曲津朋, 等. 钠离子电池用高性能锑基负极材料的调控策略研究进展[J]. 物理化学学报, 2022, 38(11): 45-71. DOI: 10.3866/PKU.WHXB202204049. |
LI Y, LAI X Q, QU J P, et al. Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(11): 45-71. DOI: 10.3866/PKU.WHXB202204049. | |
12 | YANG Y C, SHI W, LENG S L, et al. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 628: 41-52. DOI: 10.1016/j.jcis.2022.08.041. |
13 | KONG B, ZU L H, PENG C X, et al. Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage[J]. Journal of the American Chemical Society, 2016, 138(50): 16533-16541. DOI: 10.1021/jacs.6b10782. |
14 | ALLAN P K, GRIFFIN J M, DARWICHE A, et al. Tracking sodium-antimonide phase transformations in sodium-ion anodes: Insights from operando pair distribution function analysis and solid-state NMR spectroscopy[J]. Journal of the American Chemical Society, 2016, 138(7): 2352-2365. DOI: 10.1021/jacs.5b13273. |
15 | TESFAMHRET Y, CARBONI M, ASFAW H D, et al. Revealing capacity fading in Sb-based anodes using symmetric sodium-ion cells[J]. Journal of Physics: Materials, 2021, 4(2): 024007. DOI: 10.1088/2515-7639/abebe9. |
16 | CHEN B C, LIANG M, WU Q Z, et al. Recent developments of antimony-based anodes for sodium- and potassium-ion batteries[J]. Transactions of Tianjin University, 2022, 28(1): 6-32. DOI: 10.1007/s12209-021-00304-9. |
17 | TIAN W F, ZHANG S L, HUO C X, et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries[J]. ACS Nano, 2018, 12(2): 1887-1893. DOI: 10.1021/acsnano.7b08714. |
18 | SU J C, LI W K, DUAN T F, et al. Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries[J]. Carbon, 2019, 153: 767-775. DOI: 10.1016/j.carbon.2019.07.053. |
19 | LIANG L Y, XU Y, WANG C L, et al. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8(10): 2954-2962. DOI: 10.1039/C5EE00878F. |
20 | QIU T Y, YANG L, XIANG Y E, et al. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon[J]. Small Methods, 2021, 5(7): e2100188. DOI: 10.1002/smtd.202100188. |
21 | HOU H S, JING M J, YANG Y C, et al. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16189-16196. DOI: 10.1021/am504310k. |
22 | YANG X M, ZHU Y M, WU D J, et al. Observing sodiation process and achieving high efficiency of yolk-shell antimony@carbon rods[J]. Science China Materials, 2022, 65(2): 349-355. DOI: 10.1007/s40843-021-1737-6. |
23 | ZHAI K, HUANG H B, LI X N, et al. 3D network and wrapping strategy derived loofah-like Sb@CNTs@C for high performance K+/Na+ storage[J]. Journal of Alloys and Compounds, 2024, 976: 172953. DOI: 10.1016/j.jallcom.2023.172953. |
24 | YANG X M, ZHU Y M, WU D J, et al. Yolk-shell antimony/carbon: Scalable synthesis and structural stability study in sodium ion batteries[J]. Advanced Functional Materials, 2022, 32(18): 2111391. DOI: 10.1002/adfm.202111391. |
25 | XIANG Y E, HU X Y, ZHONG X, et al. Mechanism of fast storage of Li/Na in complex Sb-based hybrid system[J]. Advanced Functional Materials, 2024, 34(10): 2311478. DOI: 10.1002/adfm.202311478. |
26 | GAO H, LEE J, LU Q X, et al. Highly stable Sb/C anode for K+ and Na+ energy storage enabled by pulsed laser ablation and polydopamine coating[J]. Small, 2023, 19(4): e2205681. DOI: 10.1002/smll.202205681. |
27 | FENG B, LONG T, YANG C L, et al. Porous Sb nanocubes embedded in three-dimensional interconnected nitrogen-doped carbon frameworks for enhanced sodium storage[J]. ACS Applied Energy Materials, 2022, 5(11): 14107-14118. DOI: 10.1021/acsaem.2c02618. |
28 | ZHANG N, CHEN X J, XU J H, et al. Hexagonal Sb nanocrystals as high-capacity and long-cycle anode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26728-26736. DOI: 10.1021/acsami.3c03340. |
29 | HAN J S, LIU D M, LIU S Y, et al. A collaborative strategy for encapsulating Sb nanoparticles into porous carbon toward high and stable sodium storage[J]. Journal of Alloys and Compounds, 2022, 921: 166054. DOI: 10.1016/j.jallcom.2022.166054. |
30 | LIU Y, QING Y, ZHOU B, et al. Yolk-shell Sb@Void@graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries[J]. ACS Nano, 2023, 17(3): 2431-2439. DOI: 10.1021/acsnano.2c09679. |
31 | PARK J, KIM M, CHOI M, et al. Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries[J]. Journal of Power Sources, 2023, 568: 232908. DOI: 10.1016/j.jpowsour. 2023.232908. |
32 | XIE M G, LI C G, REN S Y, et al. Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-ion battery anodes[J]. Journal of Materials Chemistry A, 2022, 10(28): 15089-15100. DOI: 10.1039/D2TA01414A. |
33 | ZHANG Y, GAO H, NIU J Z, et al. Scalable fabrication of core-shell Sb@Co(OH)2 nanosheet anodes for advanced sodium-ion batteries via magnetron sputtering[J]. ACS Nano, 2018, 12(11): 11678-11688. DOI: 10.1021/acsnano.8b07227. |
34 | LI M N, LIU Y Y, QIN B, et al. Polyaniline-coated nanoporous antimony with improved performance for sodium-ion battery anodes[J]. Journal of Alloys and Compounds, 2021, 861: 158647. DOI: 10.1016/j.jallcom.2021.158647. |
35 | PENG B X, LV Z R, FANG Y Q, et al. Anchoring atomic antimony in an intercalative Mo-S framework via soft covalent bonding for fast-charging and long-lived sodium ion batteries[J]. Inorganic Chemistry Frontiers, 2023, 10(13): 3884-3890. DOI: 10.1039/D3QI00460K. |
36 | LI C, WEI G J, WANG S T, et al. Two-dimensional coupling: Sb nanoplates embedded in MoS2 nanosheets as efficient anode for advanced sodium ion batteries[J]. Materials Chemistry and Physics, 2018, 211: 375-381. DOI: 10.1016/j.matchemphys. 2018.03.010. |
37 | ARNOLD S, GENTILE A, LI Y J, et al. Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(19): 10569-10585. DOI: 10.1039/D2TA00542E. |
38 | LIANG Y W, WANG Z S, XU Z Y, et al. Highly-confined, micro-Sb/C@MXene 3D architectures with strengthened interfacial bonding for high volumetric sodium-ion storage[J]. Applied Surface Science, 2024, 651: 159234. DOI: 10.1016/j.apsusc. 2023.159234. |
39 | YAO T H, LI L, WANG H K. Embedding antimony nanoparticles into metal-organic framework derived TiO2@carbon nanotablets for high-performance sodium storage[J]. Chinese Chemical Letters, 2023, 34(10): 108186. DOI: 10.1016/j.cclet.2023.108186. |
40 | KONG M, LIU Y, ZHOU B, et al. Rational design of Sb@C@TiO2 triple-shell nanoboxes for high-performance sodium-ion batteries[J]. Small, 2020, 16(43): 2001976. DOI: 10.1002/smll.202001976. |
41 | ZHENG X T, CHEN K T, HSIEH Y Y, et al. Ultrafine antimony nanocrystals/phosphorus pitaya-like nanocomposites as anodes for high-performance sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18535-18544. DOI: 10.1021/acssuschemeng.0c06477. |
42 | QIAN H, LIU Y, CHEN H X, et al. Emerging bismuth-based materials: From fundamentals to electrochemical energy storage applications[J]. Energy Storage Materials, 2023, 58: 232-270. DOI: 10.1016/j.ensm.2023.03.023. |
43 | ZHAO W Y, GUO M, ZUO Z J, et al. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery[J]. Engineering, 2022, 11: 87-94. DOI: 10.1016/j.eng.2021.08.028. |
44 | MORTAZAVI M, YE Q J, BIRBILIS N, et al. High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights[J]. Journal of Power Sources, 2015, 285: 29-36. DOI: 10.1016/j.jpowsour.2015.03.051. |
45 | SU D W, DOU S X, WANG G X. Bismuth: A new anode for the Na-ion battery[J]. Nano Energy, 2015, 12: 88-95. DOI: 10.1016/j.nanoen.2014.12.012. |
46 | GAO H, MA W S, YANG W F, et al. Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study[J]. Journal of Power Sources, 2018, 379: 1-9. DOI: 10.1016/j.jpowsour.2018.01.017. |
47 | LIU Y N, WANG Y, WANG H Q, et al. Binder-free 3D hierarchical Bi nanosheet/CNTs arrays anode for full sodium-ion battery with high voltage above 4 V[J]. Journal of Power Sources, 2022, 540: 231639. DOI: 10.1016/j.jpowsour.2022.231639. |
48 | SOTTMANN J, HERRMANN M, VAJEESTON P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying[J]. Chemistry of Materials, 2016, 28(8): 2750-2756. DOI: 10.1021/acs.chemmater.6b00491. |
49 | WANG C C, WANG L B, LI F J, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials, 2017, 29(35): 1702212. DOI: 10.1002/adma.201702212. |
50 | ZHOU J, CHEN J C, CHEN M X, et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries[J]. Advanced Materials, 2019, 31(12): e1807874. DOI: 10.1002/adma.201807874. |
51 | LIU S, FENG J K, BIAN X F, et al. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10098-10104. DOI: 10.1039/C6TA02796B. |
52 | CHENG X L, LI D J, WU Y, et al. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4913-4921. DOI: 10.1039/C8TA11947C. |
53 | CHEN J, FAN X L, JI X, et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1218-1225. DOI: 10.1039/C7EE03016A. |
54 | CHENG X L, YANG H, WEI C Y, et al. Synergistic effect of 1D bismuth nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 8081-8090. DOI: 10.1039/D3TA01214J. |
55 | ZHANG X S, QIU X Q, LIN J X, et al. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries[J]. Small, 2023, 19(35): e2302071. DOI: 10.1002/smll.202302071. |
56 | YANG H, XU R, YAO Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes[J]. Advanced Functional Materials, 2019, 29(13): 1809195. DOI: 10.1002/adfm.201809195. |
57 | XUE P, WANG N N, FANG Z W, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries[J]. Nano Letters, 2019, 19(3): 1998-2004. DOI: 10.1021/acs.nanolett.8b05189. |
58 | PARK B, LEE S, HAN D Y, et al. Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery[J]. Applied Surface Science, 2023, 614: 156188. DOI: 10.1016/j.apsusc.2022.156188. |
59 | YIN H, LI Q W, CAO M L, et al. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries[J]. Nano Research, 2017, 10(6): 2156-2167. DOI: 10.1007/s12274-016-1408-z. |
60 | LIANG Y Z, SONG N, ZHANG Z, et al. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage[J]. Advanced Materials, 2022, 34(28): e2202673. DOI: 10.1002/adma.202202673. |
61 | ZHANG Y F, SU Q, XU W J, et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries[J]. Advanced Science, 2019, 6(16): 1900162. DOI: 10.1002/advs.201900162. |
62 | WEI S W, LI W, MA Z Z, et al. Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb composite anodes for high-performance sodium-ion batteries[J]. Small, 2023, 19(46): e2304265. DOI: 10.1002/smll.202304265. |
63 | ZHANG F, LIU X J, WANG B B, et al. Bi@C nanospheres with the unique petaloid core-shell structure anchored on porous graphene nanosheets as an anode for stable sodium- and potassium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 59867-59881. DOI: 10.1021/acsami.1c16946. |
64 | LONG H L, YIN X P, WANG X, et al. Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 787-796. DOI: 10.1016/j.jechem.2021.11.011. |
65 | QIU J X, LI S, SU X T, et al. Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage[J]. Chemical Engineering Journal, 2017, 320: 300-307. DOI: 10.1016/j.cej.2017.03.054. |
66 | CHEN J, XIAO J, LI J Y, et al. Nano-engineering induced Bi dots in situ anchored into modified porous carbon with superior sodium ion storage[J]. Journal of Materials Chemistry A, 2022, 10(38): 20635-20645. DOI: 10.1039/D2TA06256A. |
67 | YU J, ZHAO D, MA C S, et al. Vapor-phase derived ultra-fine Bismuth nanoparticles embedded in carbon nanotube networks as anodes for sodium and potassium ion batteries[J]. Journal of Colloid and Interface Science, 2023, 643: 409-419. DOI: 10.1016/j.jcis.2023.04.039. |
68 | XIONG P X, BAI P X, LI A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries[J]. Advanced Materials, 2019, 31(48): e1904771. DOI: 10.1002/adma.201904771. |
69 | ZHU H J, WANG F C, PENG L, et al. Inlaying bismuth nanoparticles on graphene nanosheets by chemical bond for ultralong-lifespan aqueous sodium storage[J]. Angewandte Chemie International Edition, 2023, 62(2): e202212439. DOI: 10.1002/anie.202212439. |
70 | MA H, LI J B, YANG J, et al. Bismuth nanoparticles anchored on Ti3C2Tx MXene nanosheets for high-performance sodium-ion batteries[J]. Chemistry–An Asian Journal, 2021, 16(22): 3774-3780. DOI: 10.1002/asia.202100974. |
71 | QIAN J F, XIONG Y, CAO Y L, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries[J]. Nano Letters, 2014, 14(4): 1865-1869. DOI: 10.1021/nl404637q. |
72 | ZHANG N, CHEN X J, ZHAO J J, et al. Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes[J]. Electrochimica Acta, 2023, 439: 141602. DOI: 10.1016/j.electacta.2022.141602. |
73 | MA W S, YIN K B, GAO H, et al. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries[J]. Nano Energy, 2018, 54: 349-359. DOI: 10.1016/j.nanoen.2018.10.027. |
74 | LI X Y, XIAO S H, NIU X B, et al. Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium storage[J]. Advanced Functional Materials, 2021, 31(37): 2104798. DOI: 10.1002/adfm.202104798. |
75 | SONG Z Y, WANG G, CHEN Y, et al. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 463: 142289. DOI: 10.1016/j.cej.2023.142289. |
76 | LI X Y, ZHANG X, NIU X B, et al. Strain retarding in multilayered hierarchical Sn-doped Sb nanoarray for durable sodium storage[J]. Advanced Functional Materials, 2023, 33(33): 2300914. DOI: 10.1002/adfm.202300914. |
77 | KALISVAART W P, OLSEN B C, LUBER E J, et al. Sb-Si alloys and multilayers for sodium-ion battery anodes[J]. ACS Applied Energy Materials, 2019, 2(3): 2205-2213. DOI: 10.1021/acsaem.8b02231. |
78 | GAO H, NIU J Z, ZHANG C, et al. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries[J]. ACS Nano, 2018, 12(4): 3568-3577. DOI: 10.1021/acsnano. 8b00643. |
79 | ZHAO Y B, MANTHIRAM A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries[J]. Chemistry of Materials, 2015, 27(8): 3096-3101. DOI: 10.1021/acs.chemmater.5b00616. |
80 | USUI H, DOMI Y, ITODA Y, et al. Solid solution strengthening of bismuth antimonide as a sodium storage material[J]. Energy & Fuels, 2021, 35(22): 18833-18838. DOI: 10.1021/acs.energyfuels.1c02987. |
81 | WANG Z Z, WANG J, NI J F, et al. Structurally durable bimetallic alloy anodes enabled by compositional gradients[J]. Advanced Science, 2022, 9(16): e2201209. DOI: 10.1002/advs.202201209. |
82 | LI X Y, GUO Y Y, HU Z J, et al. Improving the initial coulombic efficiency of sodium-storage antimony anodes via electrochemically alloying bismuth[J]. ACS Applied Materials & Interfaces, 2023, 15(39): 45926-45937. DOI: 10.1021/acsami.3c10307. |
83 | NI J F, LI X Y, SUN M L, et al. Durian-inspired design of bismuth-antimony alloy arrays for robust sodium storage[J]. ACS Nano, 2020, 14(7): 9117-9124. DOI: 10.1021/acsnano.0c04366. |
84 | ZHAO J J, XU J H, LI Q, et al. BiSbx nanoalloys encapsulated by carbon fibers as high rate sodium ions storage anodes[J]. Journal of Electroanalytical Chemistry, 2023, 939: 117452. DOI: 10.1016/j.jelechem.2023.117452. |
85 | WANG J F, LIN Y H, LV W, et al. Bismuth-antimony alloy nanoparticles embedded in 3D hierarchical porous carbon skeleton film for superior sodium storage[J]. Molecules, 2023, 28(18): 6464. DOI: 10.3390/molecules28186464. |
86 | MA W S, YU B, TAN F Q, et al. Bismuth-antimony alloy embedded in carbon matrix for ultra-stable sodium storage[J]. Materials, 2023, 16(6): 2189. DOI: 10.3390/ma16062189. |
87 | WANG X X, FENG B, HUANG L M, et al. Superior electrochemical performance of Sb-Bi alloy for sodium storage: Understanding from alloying element effects and new cause of capacity attenuation[J]. Journal of Power Sources, 2022, 520: 230826. DOI: 10.1016/j.jpowsour.2021.230826. |
88 | LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9: 134-142. DOI: 10.1038/s41560-023-01414-5. |
[1] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[2] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[3] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[4] | 谭仕荣, 尹文骥, 曾翠鸿, 黎小琼, 訚硕, 纪方力, 胡思江, 王红强, 李庆余. 高温淬火对钠离子电池锰基层状正极材料结构和性能的影响[J]. 储能科学与技术, 2024, 13(7): 2399-2406. |
[5] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[6] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
[7] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[8] | 王立锋, 任乃青, 杨海, 姚雨, 余彦. 低温钠离子电池电解液研究进展[J]. 储能科学与技术, 2024, 13(7): 2206-2223. |
[9] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[10] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[11] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[12] | 所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
[13] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[14] | 周理, 刘琰. 合金材料在储能技术中的应用与发展[J]. 储能科学与技术, 2024, 13(6): 1874-1876. |
[15] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||