储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1040-1053.doi: 10.19799/j.cnki.2095-4239.2025.0137
张新宇1(), 罗声豪1, 吴颖欣1, 刘针莹1, 张立志1, 凌子夜1,2(
)
收稿日期:
2025-02-20
修回日期:
2025-03-06
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
凌子夜
E-mail:2290652654@qq.com;zyling@scut.edu.cn
作者简介:
张新宇(1998—),男,博士研究生,研究方向为相变电池热管理,E-mail:2290652654@qq.com;
基金资助:
Xinyu ZHANG1(), Shenghao LUO1, Yingxin WU1, Zhenying LIU1, Lizhi ZHANG1, Ziye LING1,2(
)
Received:
2025-02-20
Revised:
2025-03-06
Online:
2025-03-28
Published:
2025-04-28
Contact:
Ziye LING
E-mail:2290652654@qq.com;zyling@scut.edu.cn
摘要:
锂离子电池的性能和安全性对温度变化高度敏感。在低温环境下,电池容量衰减和充电效率显著降低,而高温运行时则加速性能退化并可能导致热失控。复合相变材料因其高效的热储存和温度调控能力,为电池全温域热管理提供了创新解决方案。在电池冷却方面,高焓值、高导热和柔性复合相变材料通过相变吸热使热量均匀分散,显著改善电池组的温度均匀性;在低温应用场景中,导电复合相变材料利用电热转换机制实现快速自加热,缓解低温对电池性能的限制;针对热失控风险,阻燃水合盐复合相变材料结合相变吸热与热分解吸热双重机制,有效抑制热量蔓延。本文综述了复合相变材料在电池冷却、加热及热失控防护中的应用策略,剖析了材料储热性能与热导率平衡对热管理效果的影响,并探讨了柔性、阻燃改性与化学储热机制的技术进展。当前研究需进一步提高材料的稳定性、经济性和工业化可行性,未来应重点发展多功能复合设计、智能响应技术以及规模化应用,以推动复合相变材料在动力电池热管理和热失控防护中的实际应用。
中图分类号:
张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053.
Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053.
表1
部分用于电池热管理和热失控防护复合PCMs对比"
复合PCMs组成 | 应用场景 | 焓值/(J/g) | 热导率/[W/(m·K)] | 阻燃性 | 性能 | 电池种类 | 参考文献 |
---|---|---|---|---|---|---|---|
三水乙酸钠+尿素+膨胀石墨+有机硅 | 散热 | 181.0 | 4.96 | 热释放率和有效燃烧热几乎为0 | 2C放电倍率下最高温度52.3 ℃,最大温差4 ℃ | Sanyo 18650电池组 | [ |
石蜡+SEBS+h-BN | 散热 | 127.8 | 2.7 | — | 6C放电倍率下最高温度45 ℃,最大温差4 ℃ | 8.6 Ah棱柱电池组 | [ |
石蜡+SEBS+膨胀石墨 | 散热和加热 | 159.9 | 1.49 | — | 30 ℃下经过10次充放电循环后温度降低3.9 ℃;-20 ℃下加热速率12.9 ℃/min | 棱柱电池和18650电池组 | [ |
石蜡+NR+膨胀石墨 | 散热 | 156.5 | 3.4 | — | 3C放电倍率下最高温度45 ℃,最大温差2 ℃ | 2.6 Ah 18650电池组 | [ |
20% OP28E纳米相变乳液 | 散热 | 44.1 | 0.53~0.60 | — | 2C放电倍率下最高温度44.6 ℃,最大温差2.5 ℃ | 2.6 Ah 18650电池组 | [ |
10%石蜡纳米相变乳液 | 散热 | 23.9 | 0.55~0.62 | — | 9C放电倍率下最高温度46 ℃,最大温差3.5 ℃ | 8 Ah棱柱电池组 | [ |
RT44HC+膨胀石墨 | 保温 | 134.3 | 9.57 | — | 47 ℃降至 -10 ℃时间延长约1750 s;2C放电倍率下最大温差8.5 ℃ | 2.6 Ah 18650电池组 | [ |
六水氯化钙+CMC | 加热 | 127.8 | — | — | 5 ℃下加热速率7.5 ℃/min,放电容量提升9.87% | 3.2 Ah 18650电池 | [ |
石蜡+膨胀石墨 | 散热和加热 | 166.2 | 2.77 | — | 3C放电倍率下温度低于50 ℃;-40 ℃下加热速率13.4 ℃/min,最大温差3.3 ℃ | 18650电池组 | [ |
石蜡+二氧化硅气凝胶 | 热失控防护 | 79.24 | 0.051 | UL-94测试中达到V-0级 | 完全阻止热失控传播 | 40 Ah棱柱电池组 | [ |
石蜡+膨胀型阻燃剂+碳化硅+膨胀石墨 | 散热和热失控防护 | 112.9 | 4.022 | — | 2C放电倍率下最高温度降低7.4 ℃;热失控传播延长90 s | Sanyo 18650和10 Ah NCM软包电池组 | [ |
三水乙酸钠+膨胀石墨 | 热失控防护 | 793.4 | 4.96 | — | 完全阻止热失控传播 | 2.6 Ah 18650电池组 | [ |
三水乙酸钠+尿素+膨胀石墨 | 热失控防护 | 1000 | 9.05 | — | 完全阻止热失控传播 | 2.6 Ah 18650电池组 | [ |
TCM40+膨胀石墨 | 散热和热失控防护 | 1276 | 9.1 | 垂直燃烧测试中达到V-0级 | 3C放电倍率下最高温度36 ℃,最大温差2.5 ℃;完全阻止热失控传播 | 2.6 Ah 18650电池组 | [ |
1 | CHAVAN S, VENKATESWARLU B, SALMAN M, et al. Thermal management strategies for lithium-ion batteries in electric vehicles: Fundamentals, recent advances, thermal models, and cooling techniques[J]. International Journal of Heat and Mass Transfer, 2024, 232: 125918. DOI: 10.1016/j.ijheatmasstransfer. 2024.125918. |
2 | VIKRAM S, VASHISHT S, RAKSHIT D, et al. Recent advancements and performance implications of hybrid battery thermal management systems for electric vehicles[J]. Journal of Energy Storage, 2024, 90: 111814. DOI: 10.1016/j.est. 2024. 111814. |
3 | DING Y H, ZHENG Y D, LI S Y, et al. A review of battery thermal management methods for electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(2): 021002. DOI: 10.1115/1.4054859. |
4 | LI J H, HUANG J H, CAO M. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries[J]. Applied Thermal Engineering, 2018, 131: 660-668. DOI: 10.1016/j.applthermaleng. 2017.12.023. |
5 | ZHOU S L, LIN S, ZHANG W B, et al. Kinetics study on inhibiting battery thermal runaway using an inorganic phase change material with a super high thermochemical storage capacity[J]. Process Safety and Environmental Protection, 2024, 191: 643-657. DOI: 10.1016/j.psep.2024.08.134. |
6 | 刘松燕, 王卫良, 彭世亮, 等. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. DOI: 10.19799/j.cnki.2095-4239.2024.0369. |
LIU S Y, WANG W L, PENG S L, et al. Thermal management system for power battery in high/low-temperature environments[J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. DOI: 10.19799/j.cnki.2095-4239.2024.0369. | |
7 | LI Z, TAVAKOLI F, EL-SHAFAY A S, et al. Economic cost and technical efficiency analysis of thermal management of a triple pack of lithium-ion battery with forced airflow and nano-phase change materials[J]. Journal of Power Sources, 2022, 542: 231715. DOI: 10.1016/j.jpowsour.2022.231715. |
8 | AMALESH T, LAKSHMI NARASIMHAN N. Liquid cooling vs hybrid cooling for fast charging lithium-ion batteries: A comparative numerical study[J]. Applied Thermal Engineering, 2022, 208: 118226. DOI: 10.1016/j.applthermaleng.2022.118226. |
9 | LUO M Y, SONG J Q, LING Z Y, et al. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from -40 ℃ to 50 ℃[J]. Materials Today Energy, 2021, 20: 100652. DOI: 10.1016/j.mtener. 2021.100652. |
10 | 罗明昀, 凌子夜, 方晓明, 等. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. DOI: 10.16085/j.issn.1000-6613.2021-2278. |
LUO M Y, LING Z Y, FANG X M, et al. Research progress of battery thermal management system based on phase change heat storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607. DOI: 10.16085/j.issn.1000-6613.2021-2278. | |
11 | ZHAO J J, CHEN Y, GONG Y, et al. A novel paraffin wax/expanded graphite/bacterial cellulose powder phase change materials for the dependable battery safety management[J]. Batteries, 2024, 10(10): 363. DOI: 10.3390/batteries10100363. |
12 | LUO H T, WANG W J, WU G H, et al. Magnetically triggered heat release from hydrate salt composite microchannels for low-temperature battery thermal management[J]. Journal of Cleaner Production, 2024, 446: 141462. DOI: 10.1016/j.jclepro.2024.141462. |
13 | MOHAMED SHAMNAZ P T, BAL D K, SAHOO B B. A technical review on controlling the Li-ion battery temperature through composite phase change materials and hybrid cooling techniques[J]. Journal of Energy Storage, 2025, 112: 115584. DOI: 10.1016/j.est.2025.115584. |
14 | KUMAR S S, RAO G P. Recent progress on battery thermal management with composite phase change materials[J]. Energy Storage, 2024, 6(4): e647. DOI: 10.1002/est2.647. |
15 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. DOI: 10.1016/j.ensm.2019.10.010. |
16 | CAO J H, LING Z Y, LIN X M, et al. Flexible composite phase change material with enhanced thermophysical, dielectric, and mechanical properties for battery thermal management[J]. Journal of Energy Storage, 2022, 52: 104796. DOI: 10.1016/j.est.2022.104796. |
17 | CHEN Z G, ZHANG F, SHAO L Q, et al. Numerical investigation and optimization of battery thermal management systems based on phase change material coupled with heating plates in low temperature environment[J]. Journal of Energy Storage, 2024, 101: 113875. DOI: 10.1016/j.est.2024.113875. |
18 | JIA Y K, UDDIN M, LI Y X, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs: A modeling study[J]. Journal of Energy Storage, 2020, 31: 101668. DOI: 10.1016/j.est.2020.101668. |
19 | LYON R E, WALTERS R N. Energetics of lithium ion battery failure[J]. Journal of Hazardous Materials, 2016, 318: 164-172. DOI: 10.1016/j.jhazmat.2016.06.047. |
20 | CHEN M Y, ZHU M H, ZHANG S Y, et al. Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials[J]. Applied Thermal Engineering, 2023, 235: 121401. DOI: 10.1016/j.applthermaleng.2023.121401. |
21 | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. DOI: 10.19799/j.cnki.2095-4239.2020.0206. |
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. DOI: 10.19799/j.cnki.2095-4239.2020.0206. | |
22 | CHEN M Y, ZHANG S Y, ZHAO L Y, et al. Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management[J]. Journal of Energy Storage, 2022, 52: 104857. DOI: 10.1016/j.est.2022.104857. |
23 | XIE M, HUANG J C, LING Z Y, et al. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110081. DOI: 10.1016/j.solmat.2019.110081. |
24 | LING Z Y, LI S M, CAI C Y, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Applied Thermal Engineering, 2021, 193: 117002. DOI: 10.1016/j.applthermaleng.2021.117002. |
25 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. DOI: 10.1016/j.apenergy.2014.01.075. |
26 | CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study[J]. Energy, 2020, 191: 116565. DOI: 10.1016/j.energy.2019.116565. |
27 | LUO M Y, LIN X M, LING Z Y, et al. An electric conductive wide-temperature flexible phase change material for all-climate battery thermal management[J]. Applied Thermal Engineering, 2024, 256: 124051. DOI: 10.1016/j.applthermaleng.2024.124051. |
28 | YANG K X, LING Z Y, FANG X M, et al. Introducing a flexible insulation network to the expanded graphite-based composite phase change material to enhance dielectric and mechanical properties for battery thermal management[J]. Journal of Energy Storage, 2023, 66: 107486. DOI: 10.1016/j.est.2023.107486. |
29 | CAO J H, WU Y, LING Z Y, et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering, 2021, 199: 117562. DOI: 10.1016/j.applthermaleng.2021.117562. |
30 | CHEN J, ZHANG P. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media[J]. Applied Energy, 2017, 190: 868-879. DOI: 10.1016/j.apenergy.2017.01.012. |
31 | ZHANG C X, JI J, ZHANG X L, et al. Development of highly stable low supercooling paraffin nano phase change emulsions for thermal management systems[J]. Journal of Molecular Liquids, 2024, 413: 125905. DOI: 10.1016/j.molliq.2024.125905. |
32 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: 118215. DOI: 10.1016/j.energy.2020.118215. |
33 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: 115808. DOI: 10.1016/j.apenergy.2020.115808. |
34 | CAO J H, FENG J X, FANG X M, et al. A delayed cooling system coupling composite phase change material and nano phase change material emulsion[J]. Applied Thermal Engineering, 2021, 191: 116888. DOI: 10.1016/j.applthermaleng.2021.116888. |
35 | WANG Y S, LUO J, WANG S, et al. Shape-stabilized phase change material with internal coolant channel coupled with phase change emulsion for power battery thermal management[J]. Chemical Engineering Journal, 2022, 438: 135648. DOI: 10.1016/j.cej.2022.135648. |
36 | LING Z Y, WEN X Y, ZHANG Z G, et al. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144: 977-983. DOI: 10.1016/j.energy.2017.12.098. |
37 | LING Z Y, LUO M Y, SONG J Q, et al. A fast-heat battery system using the heat released from detonated supercooled phase change materials[J]. Energy, 2021, 219: 119496. DOI: 10.1016/j.energy.2020.119496. |
38 | LUO M Y, LIN X M, FENG J X, et al. Fast self-preheating system and energy conversion model for lithium-ion batteries under low-temperature conditions[J]. Journal of Power Sources, 2023, 565: 232897. DOI: 10.1016/j.jpowsour.2023.232897. |
39 | LUO M Y, LING Z Y, ZHANG Z G, et al. A fast-response preheating system coupled with supercapacitor and electric conductive phase change materials for lithium-ion battery energy storage system at low temperatures[J]. Journal of Energy Storage, 2023, 73: 109255. DOI: 10.1016/j.est.2023.109255. |
40 | OSMANI K, ALKHEDHER M, RAMADAN M, et al. Recent progress in the thermal management of lithium-ion batteries[J]. Journal of Cleaner Production, 2023, 389: 136024. DOI: 10.1016/j.jclepro.2023.136024. |
41 | LING Z Y, LIN W Z, ZHANG Z G, et al. Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment[J]. Applied Energy, 2020, 259: 114120. DOI: 10.1016/j.apenergy.2019.114120. |
42 | MO C M, ZHANG G Q, MA X R, et al. Integrated battery thermal management system coupling phase change material cooling and direct heating strategies[J]. Energy & Fuels, 2022, 36(17): 10372-10383. DOI: 10.1021/acs.energyfuels.2c01984. |
43 | HUANG Q Q, LI X X, ZHANG G Q, et al. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material[J]. Journal of Cleaner Production, 2022, 330: 129718. DOI: 10.1016/j.jclepro.2021.129718. |
44 | NIU J Y, DENG S Y, GAO X N, et al. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation[J]. Journal of Energy Storage, 2022, 47: 103557. DOI: 10.1016/j.est.2021.103557. |
45 | CAO J H, LING Z Y, LIN S, et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite[J]. Chemical Engineering Journal, 2022, 433: 133536. DOI: 10.1016/j.cej.2021.133536. |
46 | LIN S, LING Z Y, LI S M, et al. Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage[J]. Energy, 2023, 266: 126481. DOI: 10.1016/j.energy.2022.126481. |
47 | ZHOU S L, ZHANG W B, LIN S, et al. Enhancing lithium-ion battery pack safety: Mitigating thermal runaway with high-energy storage inorganic hydrated salt/expanded graphite composite[J]. Journal of Energy Storage, 2024, 92: 112089. DOI: 10.1016/j.est.2024.112089. |
48 | MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. DOI: 10.1016/j.rser.2016.12.012. |
49 | ZHANG H, XU C L, FANG G Y. Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111747. DOI: 10.1016/j.solmat. 2022.111747. |
50 | MA Q Y, GAO W. Preparation and characterization of high-enthalpy inorganic hydrated salt phase change materials based on sodium silicate precursor[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(23): 14449-14461. DOI: 10.1007/s10973-024-13762-9. |
51 | ZHANG W B, ZHANG Y X, LING Z Y, et al. Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and macroencapsulation with commercial sealants: A two-step method to enhance the thermal stability of inorganic composite phase change materials[J]. Applied Energy, 2019, 253: 113540. DOI: 10.1016/j.apenergy. 2019.113540. |
52 | MAN X, LU H, XU Q, et al. Preparation and thermal property enhancement of sodium acetate trihydrate-lithium chloride-potassium chloride expanded graphite composite phase change materials[J]. Solar Energy Materials and Solar Cells, 2024, 266: 112695. DOI: 10.1016/j.solmat.2024.112695. |
[1] | 武小兰, 马彭杰, 白志峰, 刘成龙, 郭桂芳, 张锦华. 一种锂离子电池组智能PID双层主动均衡控制方法[J]. 储能科学与技术, 2025, 14(3): 1150-1159. |
[2] | 曾帅波, 李涌仪, 彭静, 何梓星, 梁倬健, 徐伟, 蓝凌霄, 梁兴华. 基于三元锂离子电池的导电剂优化设计[J]. 储能科学与技术, 2025, 14(3): 1187-1197. |
[3] | 张朝龙, 陈阳, 刘梦玲, 张俣峰, 华国庆, 阴盼昐. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(3): 1258-1269. |
[4] | 全瑞星, 缪文晶, 袁长顺, 程广贵, 赵彦琦. 聚乙二醇基定型复合相变材料的研究进展[J]. 储能科学与技术, 2025, 14(3): 1010-1025. |
[5] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
[6] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[7] | 陈会明, 蔡艺嘉, 尹文骥, 陈美芬, 黄有国, 胡思江, 王红强, 李庆余. 铬钼双掺杂调控富锂锰基正极材料结构和电化学性能[J]. 储能科学与技术, 2025, 14(3): 1123-1132. |
[8] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[9] | 周德清, 蔡艺嘉, 张子芩, 周丽萍, 胡思江, 黄有国, 王红强, 李庆余. MoS2 尖晶石包覆富锂锰基正极材料的电化学性能[J]. 储能科学与技术, 2025, 14(3): 1087-1096. |
[10] | 段双明, 夏馗峰, 朱微. 考虑多种应用场景的锂离子电池多阶优化充电策略[J]. 储能科学与技术, 2025, 14(2): 779-790. |
[11] | 陈岳浩, 陈莎, 陈慧兰, 孙小琴, 罗永强. 储能电池组浸没式液冷系统冷却性能模拟研究[J]. 储能科学与技术, 2025, 14(2): 648-658. |
[12] | 朱鹏杰, 李伟, 张楚, 宋浩, 李贝贝, 刘秀梅, 刘利利. 基于烟气扩散的储能柜内锂电池热失控预警研究[J]. 储能科学与技术, 2025, 14(2): 624-635. |
[13] | 张子恒, 耿萌萌, 范茂松, 金玉红, 刘晶冰, 杨凯, 汪浩. 基于弛豫时间分布法的退役动力电池健康状态评估[J]. 储能科学与技术, 2025, 14(2): 770-778. |
[14] | 李嘉波, 王志璇, 田迪, 孙中麟. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. |
[15] | 杨智颖, 卢伟, 姚嘉, 程阳, 伍德坚, 文海龙. 基于变密度拓扑优化的液冷板散热流道设计[J]. 储能科学与技术, 2025, 14(2): 702-713. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||