储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2635-2653.doi: 10.19799/j.cnki.2095-4239.2025.0053
刘涛涛1(), 张少朋1, 王艺斐1,2(
), 林曦鹏1,2(
)
收稿日期:
2025-01-14
修回日期:
2025-02-15
出版日期:
2025-07-28
发布日期:
2025-07-11
通讯作者:
王艺斐,林曦鹏
E-mail:2743585592@qq.com;wangyifei@iet.cn;linxipeng05@163.com
作者简介:
刘涛涛(1995—),男,硕士,研究方向为相变材料,E-mail:2743585592@qq.com;
基金资助:
Taotao LIU1(), Shaopeng ZHANG1, Yifei WANG1,2(
), Xipeng LIN1,2(
)
Received:
2025-01-14
Revised:
2025-02-15
Online:
2025-07-28
Published:
2025-07-11
Contact:
Yifei WANG, Xipeng LIN
E-mail:2743585592@qq.com;wangyifei@iet.cn;linxipeng05@163.com
摘要:
相变材料可逆地储存热能,可以在一定程度上缓解人们对能源消耗的担忧。基于相变材料的储热技术在温度调节和热能存储应用方面具有重要的潜力。然而,传统相变材料存在热导率低、固液相变过程会产生泄漏和功能单一等缺点,阻碍了其更广泛的发展和应用。有机多孔定形材料主要有生物质基和聚合物基多孔材料,可以作为构建形状稳定的复合相变材料的支撑材料,作为封装相变材料时与其他的功能材料复合,可制备形状稳定且具有多功能的复合相变材料,有效地解决相变储热领域的这些问题。本文首先阐述了生物质基和聚合物基多孔定形复合相变储热材料的物理共混、真空浸渍、化学接枝和静电纺丝4种制备方法,并比较了各自的优缺点。然后重点综述了通过直接复合和功能化复合的方式制备有机多孔定形复合相变材料以克服相变材料缺点的最新研究进展,并总结了相变材料和有机多孔定形材料复合后的热学性能。此外,介绍了有机多孔定形复合相变材料在太阳能储存、工业余热、智能建筑、可穿戴织物、电子设备和生物医学领域的典型应用。最后,强调了有机多孔定形复合相变储热材料在研究中存在的一些挑战,为开发新型和综合性能优异的复合相变材料提供更多的研究思路。
中图分类号:
刘涛涛, 张少朋, 王艺斐, 林曦鹏. 有机多孔定形复合相变储热材料研究进展[J]. 储能科学与技术, 2025, 14(7): 2635-2653.
Taotao LIU, Shaopeng ZHANG, Yifei WANG, Xipeng LIN. Organic porous shape-stabilized composite phase change materials for thermal energy storage: A review[J]. Energy Storage Science and Technology, 2025, 14(7): 2635-2653.
表3
生物质基复合PCMs传热性能和热循环稳定性"
复合PCMs体系 | 复合PCMs热导率/[W/(m·K)] | 热导率提升幅度(与纯PCMs相比)/% | 无泄漏热循环次数 | 文献 | |||
---|---|---|---|---|---|---|---|
复合方式 | 载体材料 | PCMs | 添加剂 | ||||
直接复合 | 土豆、白萝卜 | PEG | — | 4.49 | 951.0 | 200 | [ |
棉花 | PW | — | 0.40 | 37.90 | 200 | [ | |
瓜尔胶 聚酰亚胺 | PEG | — | 0.62 | 100.0 | 100 | [ | |
多肉植物 | PW | — | 0.43 | 72.00 | 20 | [ | |
芦苇 | PW | — | 0.41 | 75.89 | 50 | [ | |
功能化 复合 | 棉秆 | PEG | 银微球 | 0.78 | 300.0 | 100 | [ |
木材 | STA | MoS2 | 0.31 | 138.0 | — | [ | |
竹子 | PEG | 碳纳米管 | 0.49 | 128.0 | 100 | [ | |
脱脂棉 | PW | SiC | 0.61 | 205.0 | 100 | [ | |
柚子皮 | PEG | MXene | 0.42 | 68.00 | — | [ |
表4
聚合物基复合PCMs传热性能和热循环稳定性"
复合PCMs体系 | 复合PCMs热导率/[W/(m·K)] | 热导率提升幅度(与纯PCMs相比)/% | 无泄漏热循环次数 | 文献 | |||
---|---|---|---|---|---|---|---|
复合方式 | 载体材料 | PCMs | 添加剂 | ||||
直接复合 | 聚乙烯醇 | PEG | — | 0.35 | 12.90 | 8 | [ |
三聚氰胺泡沫 | PW | — | 0.30 | 2.0 | 100 | [ | |
聚合物LDPE/SEBS | 十六烷 | — | 0.24 | 72.14 | 3 | [ | |
聚合物PTP-A | PEG | — | — | — | 50 | [ | |
聚合物HPP | 1-十八醇 | — | — | — | 50 | [ | |
功能化 复合 | 环氧树脂 | PW | 膨胀石墨 | 1.29 | 100.0 | 41 | [ |
烯烃嵌段共聚物 | PW | 氮化铝粉末 膨胀石墨 | 1.56 | 262.0 | 200 | [ | |
热塑性聚氨酯 | LA | 多壁碳纳 米管 | — | — | 15 | [ | |
聚二乙烯苯纳米管 | PW | 聚吡咯 | — | — | 500 | [ | |
聚氨酯 | PEG | 聚多巴胺 颗粒 | 0.37 | 39.62 | 2 | [ |
[1] | KALNÆS S E, JELLE B P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities[J]. Energy and Buildings, 2015, 94: 150-176. DOI: 10.1016/j.enbuild.2015.02.023. |
[2] | JENSEN S Ø, MARSZAL-POMIANOWSKA A, LOLLINI R, et al. IEA EBC annex 67 energy flexible buildings[J]. Energy and Buildings, 2017, 155: 25-34. DOI: 10.1016/j.enbuild.2017.08.044. |
[3] | FINCK C, LI R L, KRAMER R, et al. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems[J]. Applied Energy, 2018, 209: 409-425. DOI: 10.1016/j.apenergy.2017.11.036. |
[4] | MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. DOI: 10.1016/j.rser.2016.12.012. |
[5] | SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on supercooling of Phase Change Materials in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 905-919. DOI: 10.1016/j.rser.2016.11.272. |
[6] | CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. DOI: 10.1016/j.rser.2013.07.028. |
[7] | CHANDEL S S, AGARWAL T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 581-596. DOI: 10.1016/j.rser.2016.09.070. |
[8] | MENG Z N, ZHANG P. Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM[J]. Applied Energy, 2017, 190: 524-539. DOI: 10.1016/j.apenergy.2016.12.163. |
[9] | PINEL P, CRUICKSHANK C A, BEAUSOLEIL-MORRISON I, et al. A review of available methods for seasonal storage of solar thermal energy in residential applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(7): 3341-3359. DOI: 10.1016/j.rser.2011.04.013. |
[10] | MITRAN R A, IONIŢǍ S, LINCU D, et al. A review of composite phase change materials based on porous silica nanomaterials for latent heat storage applications[J]. Molecules, 2021, 26(1): 241. DOI: 10.3390/molecules26010241. |
[11] | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. DOI: 10.1016/S1359-4311(02)00192-8. |
[12] | METTE B, KERSKES H, DRÜCK H, et al. New highly efficient regeneration process for thermochemical energy storage[J]. Applied Energy, 2013, 109: 352-359. DOI: 10.1016/j.apenergy. 2013.01.087. |
[13] | 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. DOI: 10.19799/j.cnki.2095-4239.2022.0521. |
LIU W, LI Z M, LIU M Y, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. DOI: 10.19799/j.cnki.2095-4239.2022.0521. | |
[14] | 全瑞星, 缪文晶, 袁长顺, 等. 聚乙二醇基定型复合相变材料的研究进展[J]. 储能科学与技术, 2025, 14(3): 1010-1025. DOI: 10.19799/j.cnki.2095-4239.2024.1159. |
QUAN R X, MIAO W J, YUAN C S, et al. Advancements in polyethylene glycol-based form-stable composite phase change materials[J]. Energy Storage Science and Technology, 2025, 14(3): 1010-1025. DOI: 10.19799/j.cnki.2095-4239.2024.1159. | |
[15] | WANG G, TANG Z D, GAO Y, et al. Phase change thermal storage materials for interdisciplinary applications[J]. Chemical Reviews, 2023, 123(11): 6953-7024. DOI: 10.1021/acs.chemrev. 2c00572. |
[16] | LI X X, ZHANG J Y, FU B W, et al. Erythritol impregnated within surface-roughened hydrophilic metal foam for medium-temperature solar-thermal energy harvesting[J]. Energy Conversion and Management, 2020, 222: 113241. DOI: 10.1016/j.enconman.2020.113241. |
[17] | WANG Z Y, TONG Z, YE Q X, et al. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage[J]. Nature Communications, 2017, 8: 1478. DOI: 10.1038/s41467-017-01618-w. |
[18] | CHANG C, NIE X, LI X X, et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials[J]. Journal of Materials Chemistry A, 2020, 8(40): 20970-20978. DOI: 10.1039/D0TA07289C. |
[19] | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. DOI: 10.1016/j.ensm.2019.10.010. |
[20] | QIU J C, HUO D, XIA Y N. Phase-change materials for controlled release and related applications[J]. Advanced Materials, 2020, 32(25): 2000660. DOI: 10.1002/adma.202000660. |
[21] | CHEN X, CHENG P, TANG Z D, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. DOI: 10.1002/advs.202001274. |
[22] | VAZIRI RAD M A, KASAEIAN A, MOUSAVI S, et al. Empirical investigation of a photovoltaic-thermal system with phase change materials and aluminum shavings porous media[J]. Renewable Energy, 2021, 167: 662-675. DOI: 10.1016/j.renene.2020.11.135. |
[23] | HERK A M, LANDFESTER K. Hybrid latex particles: Preparation with (mini)emulsion polymerization[M]. 1ed. Berlin, Heidelberg: Springer Nature, 2010. DOI: 10.1007/978-3-642-16060-8. |
[24] | MALEKIPIRBAZARI M, SADRAMELI S M, DORKOOSH F, et al. Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications[J]. International Journal of Energy Research, 2014, 38(11): 1492-1500. DOI: 10.1002/er.3153. |
[25] | JOSE N, RAVINDRA M R. Microencapsulation approaches for the development of novel thermal energy storage systems and their applications[J]. Solar Energy Materials and Solar Cells, 2025, 280: 113271. DOI: 10.1016/j.solmat.2024.113271. |
[26] | WANG J W, JIA X L, ATINAFU D G, et al. Synthesis of "graphene-like" mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat[J]. Journal of Materials Chemistry A, 2017, 5(46): 24321-24328. DOI: 10.1039/C7TA05594C. |
[27] | HUANG X B, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. DOI: 10.1016/j.cej.2018.09.013. |
[28] | CHEN X, GAO H Y, XING L W, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials[J]. Energy Storage Materials, 2019, 18: 280-288. DOI: 10.1016/j.ensm.2018.08.024. |
[29] | GAN W T, CHEN C J, WANG Z Y, et al. Dense, self-formed char layer enables a fire-retardant wood structural material[J]. Advanced Functional Materials, 2019, 29(14): 1807444. DOI: 10.1002/adfm.201807444. |
[30] | SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. DOI: 10.1038/nature25476. |
[31] | ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. DOI: 10.1016/j.rser.2020.110127. |
[32] | SONG J Y, HE H F, WANG Y B, et al. Shape-stabilized phase change composites supported by biomass loofah sponge-derived microtubular carbon scaffold toward thermal energy storage and electric-to-thermal conversion[J]. Journal of Energy Storage, 2022, 56: 105891. DOI: 10.1016/j.est.2022.105891. |
[33] | LIU C H, XIAO T, ZHAO J T, et al. Polymer engineering in phase change thermal storage materials[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113814. DOI: 10.1016/j.rser.2023. 113814. |
[34] | ZHAO Y J, MIN X, HUANG Z H, et al. Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage[J]. Energy and Buildings, 2018, 158: 1049-1062. DOI: 10.1016/j.enbuild.2017.10.078. |
[35] | UMAIR M M, ZHANG Y A, TEHRIM A, et al. Form-stable phase-change composites supported by a biomass-derived carbon scaffold with multiple energy conversion abilities[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1393-1401. DOI: 10.1021/acs.iecr.9b06288. |
[36] | ZHANG Q F, XIA T F, ZHANG Q H, et al. Biomass homogeneity reinforced carbon aerogels derived functional phase-change materials for solar-thermal energy conversion and storage[J]. Energy & Environmental Materials, 2023, 6(1): e12264. DOI: 10.1002/eem2.12264. |
[37] | WEI Y H, LI J J, SUN F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. DOI: 10.1039/C7GC03595K. |
[38] | LI Y Q, SAMAD Y A, POLYCHRONOPOULOU K, et al. From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials[J]. Journal of Materials Chemistry A, 2014, 2(21): 7759-7765. DOI: 10.1039/C4TA00839A. |
[39] | TIAN S, YANG R Y, PAN Z H, et al. Anisotropic reed-stem-derived hierarchical porous biochars supported paraffin wax for efficient solar-thermal energy conversion and storage[J]. Journal of Energy Storage, 2022, 56: 106153. DOI: 10.1016/j.est. 2022.106153. |
[40] | YANG H Y, LIU Y S, LI J, et al. Full-wood photoluminescent and photothermic materials for thermal energy storage[J]. Chemical Engineering Journal, 2021, 403: 126406. DOI: 10.1016/j.cej.2020.126406. |
[41] | ZHANG J W, CHEN Y, NIE Z G, et al. Silver microsphere doping porous-carbon inspired shape-stable phase change material with excellent thermal properties: Preparation, optimization, and mechanism[J]. Scientific Reports, 2020, 10: 20843. DOI: 10.1038/s41598-020-77901-6. |
[42] | WEI Z C, ZHANG Y X, CAI C Y, et al. Wood lamella-inspired photothermal stearic acid-eutectic gallium-indium-based phase change aerogel for thermal management and infrared stealth[J]. Small, 2023, 19(46): 2302886. DOI: 10.1002/smll.202302886. |
[43] | ZHENG C W, ZHANG H Y, XU L L, et al. Carbonized bamboo parenchyma cells loaded with functional carbon nanotubes for preparation composite phase change materials with superior thermal conductivity and photo-thermal conversion efficiency[J]. Journal of Building Engineering, 2022, 56: 104749. DOI: 10.1016/j.jobe.2022.104749. |
[44] | ZHU C Y, ZHAO C Z, CHEN Z H, et al. Anisotropically thermal transfer improvement and shape stabilization of paraffin supported by SiC-coated biomass carbon fiber scaffolds for thermal energy storage[J]. Journal of Energy Storage, 2022, 46: 103866. DOI: 10.1016/j.est.2021.103866. |
[45] | ZHU G, CHEN Z Y, WU B L, et al. Dual-enhancement effect of electrostatic adsorption and chemical crosslinking for nanocellulose-based aerogels[J]. Industrial Crops and Products, 2019, 139: 111580. DOI: 10.1016/j.indcrop.2019.111580. |
[46] | MARIANO M, EL KISSI N, DUFRESNE A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges[J]. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(12): 791-806. DOI: 10.1002/polb.23490. |
[47] | WANG D B, FANG Y X, YU W, et al. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110850. DOI: 10.1016/j.solmat.2020.110850. |
[48] | ZHANG Y L, MA Z L, RUAN K P, et al. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management[J]. Nano Research, 2022, 15(6): 5601-5609. DOI: 10.1007/s12274-022-4358-7. |
[49] | CAO Y, ZENG Z H, HUANG D Y, et al. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage[J]. Nano Research, 2022, 15(9): 8524-8535. DOI: 10.1007/s12274-022-4626-6. |
[50] | SHENG X X, DONG D X, LU X, et al. MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106067. DOI: 10.1016/j.compositesa.2020.106067. |
[51] | BONADIES I, IZZO RENZI A, COCCA M, et al. Heat storage and dimensional stability of poly(vinyl alcohol) based foams containing microencapsulated phase change materials[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9342-9350. DOI: 10.1021/acs.iecr.5b02187. |
[52] | YANG L, YANG J, TANG L S, et al. Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity[J]. Energy & Fuels, 2020, 34(2): 2471-2479. DOI: 10.1021/acs.energyfuels.9b04212. |
[53] | JING J H, WU H Y, SHAO Y W, et al. Melamine foam-supported form-stable phase change materials with simultaneous thermal energy storage and shape memory properties for thermal management of electronic devices[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19252-19259. DOI: 10.1021/acsami. 9b06198. |
[54] | ZOU T, XU T, CUI H Z, et al. Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4·12H2O-K2HPO4·3H2O eutectic hydrated salt[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111334. DOI: 10.1016/j.solmat.2021.111334. |
[55] | CHRIAA I, TRIGUI A, KARKRI M, et al. Thermal properties of shape-stabilized phase change materials based on low density polyethylene, hexadecane and SEBS for thermal energy storage[J]. Applied Thermal Engineering, 2020, 171: 115072. DOI: 10.1016/j.applthermaleng.2020.115072. |
[56] | ANDRIAMITANTSOA R S, DONG W J, GAO H Y, et al. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage[J]. Chemical Physics Letters, 2017, 671: 165-173. DOI: 10.1016/j.cplett.2017.01.028. |
[57] | TANG J, YANG M, YU F, et al. 1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage[J]. Applied Energy, 2017, 187: 514-522. DOI: 10.1016/j.apenergy.2016.11.043. |
[58] | LI Z, HE W, XU J J, et al. Preparation and characterization of in situ grafted/crosslinked polyethylene glycol/polyvinyl alcohol composite thermal regulating fiber[J]. Solar Energy Materials and Solar Cells, 2015, 140: 193-201. DOI: 10.1016/j.solmat. 2015.04.014. |
[59] | GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology, 2020, 193: 108134. DOI: 10.1016/j.compscitech.2020.108134. |
[60] | WANG Z Y, SITU W F, LI X X, et al. Novel shape stabilized phase change material based on epoxy matrix with ultrahigh cycle life for thermal energy storage[J]. Applied Thermal Engineering, 2017, 123: 1006-1012. DOI: 10.1016/j.applthermaleng.2017.05.179. |
[61] | LIN X W, ZHANG X L, JI J, et al. Development of flexible form-stable phase change material with enhanced electrical resistance for thermal management[J]. Journal of Cleaner Production, 2021, 311: 127517. DOI: 10.1016/j.jclepro.2021.127517. |
[62] | NIU Z X, YUAN W Z. Smart nanocomposite nonwoven wearable fabrics embedding phase change materials for highly efficient energy conversion-storage and use as a stretchable conductor[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4508-4518. DOI: 10.1021/acsami.0c19674. |
[63] | KONG L B, WANG Z Y, KONG X F, et al. Large-scale fabrication of form-stable phase change nanotube composite for photothermal/electrothermal energy conversion and storage[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29965-29974. DOI: 10.1021/acsami.1c07160. |
[64] | YANG S W, DU X S, DENG S, et al. Recyclable and self-healing polyurethane composites based on Diels-Alder reaction for efficient solar-to-thermal energy storage[J]. Chemical Engineering Journal, 2020, 398: 125654. DOI: 10.1016/j.cej. 2020.125654. |
[65] | WU H Y, CHEN R T, SHAO Y W, et al. Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13532-13542. DOI: 10.1021/acssuschemeng.9b03169. |
[66] | SHI T, ZHENG Z H, LIU H, et al. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage[J]. Composites Science and Technology, 2022, 217: 109127. DOI: 10.1016/j.compscitech.2021.109127. |
[67] | AFTAB W, KHURRAM M, SHI J M, et al. Highly efficient solar-thermal storage coating based on phosphorene encapsulated phase change materials[J]. Energy Storage Materials, 2020, 32: 199-207. DOI: 10.1016/j.ensm.2020.07.032. |
[68] | LIU C H, ZHANG J H, LIU J, et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer[J]. Angewandte Chemie International Edition, 2021, 60(25): 13978-13987. DOI: 10.1002/anie.202103186. |
[69] | WU G Z, BING N C, LI Y F, et al. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion[J]. Energy Conversion and Management, 2022, 256: 115361. DOI: 10.1016/j.enconman.2022.115361. |
[70] | PHILIBERT C. Renewable Energy for Industry [R]. Paris: IEA, 2017. |
[71] | GONG S, LI X L, SHENG M J, et al. High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery[J]. ACS Applied Materials & Interfaces, 2021, 13(39): 47174-47184. DOI: 10.1021/acsami.1c15670. |
[72] | CHENG W L, MEI B J, LIU Y N, et al. A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation[J]. Energy, 2011, 36(10): 5797-5804. DOI: 10.1016/j.energy. 2011.08.050. |
[73] | CHENG W L, YUAN X D. Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers[J]. Energy, 2013, 59: 265-276. DOI: 10.1016/j.energy.2013.06.045. |
[74] | HARISH V S K V, KUMAR A. A review on modeling and simulation of building energy systems[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 1272-1292. DOI: 10.1016/j.rser.2015.12.040. |
[75] | ZHANG Y P, LIN K P, YANG R, et al. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings[J]. Energy and Buildings, 2006, 38(10): 1262-1269. DOI: 10.1016/j.enbuild.2006.02.009. |
[76] | REN X M, SHEN H L, YANG Y, et al. Study on the properties of a novel shape-stable epoxy resin sealed expanded graphite/paraffin composite PCM and its application in buildings[J]. Phase Transitions, 2019, 92(6): 581-594. DOI: 10.1080/01411594. 2019.1610174. |
[77] | DURAKOVIĆ B, MEŠETOVIĆ S. Thermal performances of glazed energy storage systems with various storage materials: An experimental study[J]. Sustainable Cities and Society, 2019, 45: 422-430. DOI: 10.1016/j.scs.2018.12.003. |
[78] | DURAKOVIC B, TORLAK M. Experimental and numerical study of a PCM window model as a thermal energy storage unit Open Access[J]. International Journal of Low-Carbon Technologies, 2017, 12(3): 272-280. DOI: 10.1093/ijlct/ctw024. |
[79] | MANDEV E. Enhancing thermoregulation in double glazed windows with PCMs and black films: An experimental study[J]. Energy and Buildings, 2025, 328: 115171. DOI: 10.1016/j.enbuild.2024.115171. |
[80] | MONTANARI C, LI Y Y, CHEN H, et al. Transparent wood for thermal energy storage and reversible optical transmittance[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20465-20472. DOI: 10.1021/acsami.9b05525. |
[81] | ZHAO J Q, SUN J M, LI Y C, et al. Wood-plastic materials with organic-inorganic hybrid phase change thermal storage as novel green energy storage composites for building energy conservation[J]. Journal of Materials Science, 2022, 57(5): 3629-3644. DOI: 10.1007/s10853-021-06861-7. |
[82] | WU J J, WANG M X, DONG L, et al. A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management[J]. ACS Nano, 2022, 16(8): 12801-12812. DOI: 10.1021/acsnano. 2c04971. |
[83] | NIU Z X, QI S Y, SHUAIB S S A, et al. Flexible core-sheath thermochromic phase change fibers for temperature management and electrical/solar energy harvesting[J]. Composites Science and Technology, 2022, 226: 109538. DOI: 10.1016/j.compscitech.2022.109538. |
[84] | YANG Z P, MA Y Y, JIA S M, et al. 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 7283-7291. DOI: 10.1021/acsami.1c21778. |
[85] | AKHILESH R, NARASIMHAN A, BALAJI C. Method to improve geometry for heat transfer enhancement in PCM composite heat sinks[J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2759-2770. DOI: 10.1016/j.ijheatmasstransfer.2005.01.032. |
[86] | WU M Q, LI T X, WANG P F, et al. Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management[J]. Small, 2022, 18(9): 2105647. DOI: 10.1002/smll.202105647. |
[87] | HE Y J, SHAO Y W, XIAO Y Y, et al. Multifunctional phase change composites based on elastic MXene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 6057-6070. DOI: 10.1021/acsami.1c23303. |
[88] | LIU Z F, HU Q M, GUO S T, et al. Thermoregulating separators based on phase-change materials for safe lithium-ion batteries[J]. Advanced Materials, 2021, 33(15): 2008088. DOI: 10.1002/adma.202008088. |
[89] | PAWŁOWSKA S, RINOLDI C, NAKIELSKI P, et al. Ultraviolet light-assisted electrospinning of core-shell fully cross-linked P(NIPAAm-co-NIPMAAm) hydrogel-based nanofibers for thermally induced drug delivery self-regulation[J]. Advanced Materials Interfaces, 2020, 7(12): 2000247. DOI: 10.1002/admi.202000247. |
[90] | ZHANG K Y, LV H J, ZHENG Y Q, et al. Nanofibrous hydrogels embedded with phase-change materials: Temperature-responsive dressings for accelerating skin wound healing[J]. Composites Communications, 2021, 25: 100752. DOI: 10.1016/j.coco.2021.100752. |
[91] | ZHANG Q, HE Z B, FANG X M, et al. Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask[J]. Energy Storage Materials, 2017, 6: 36-45. DOI: 10.1016/j.ensm. 2016.09.006. |
[92] | SHAO Y W, HU W W, GAO M H, et al. Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage, shape memory and thermal therapy functions[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106291. DOI: 10.1016/j.compositesa.2021.106291. |
[93] | LV J, WANG J R, WANG J J, et al. Nanofibrous films embedded with phase change material: Flexible and photo-responsive dressings for thermal compress therapy[J]. Journal of Energy Storage, 2023, 60: 106609. DOI: 10.1016/j.est.2023.106609. |
[1] | 杨儒松, 侯朝霞, 李伟, 王颢然, 高旭, 龙海波. PANI/MnO2/rGO-P三元复合电极的制备及在超级电容器中的应用[J]. 储能科学与技术, 2025, 14(7): 2791-2800. |
[2] | 孟凡康, 彭栋坤, 蔡鹏. 严寒地区相变日光温室蓄放热性能模拟研究[J]. 储能科学与技术, 2025, 14(6): 2532-2539. |
[3] | 赵云鹏, 李彦芳, 崔昕浩, 孙海燕, 滕莹雪. 原位氮掺杂石墨烯的制备及超级电容器性能研究[J]. 储能科学与技术, 2025, 14(6): 2270-2277. |
[4] | 李一鸣, 严景好, 席丽娜, 孙晓兵, 刘鸣皋, 李杰, 孙小琴. 基于高孔隙率泡沫金属的偏心管式复合相变储热单元储热性能数值模拟[J]. 储能科学与技术, 2025, 14(5): 1931-1942. |
[5] | 杨斌, 于祥京, 郑洋, 杨世轩, 杨启容, 乔大梁, 孙杨, 李友平. 管壳式相变储能换热器翅片优化模拟分析[J]. 储能科学与技术, 2025, 14(4): 1394-1412. |
[6] | 黄喆, 于志明, 卿召进, 张兆利. 旋转热边界下球形蓄热单元内PW/SEBS/EG复合相变材料的传热特性[J]. 储能科学与技术, 2025, 14(4): 1413-1423. |
[7] | 全瑞星, 缪文晶, 袁长顺, 程广贵, 赵彦琦. 聚乙二醇基定型复合相变材料的研究进展[J]. 储能科学与技术, 2025, 14(3): 1010-1025. |
[8] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[9] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
[10] | 陈艳, 黎子琦, 陈南豪, 张一弛, 吴晓鸿, 陈大柱. 聚乙二醇基聚合物固固相变材料的研究进展[J]. 储能科学与技术, 2025, 14(1): 124-139. |
[11] | 刘云汉, 王亮, 张双, 林曦鹏, 葛志伟, 白亚开, 林霖, 王艺斐, 陈海生. 基于圆柱封装单元的水合盐相变储热填充床的储释特性实验研究[J]. 储能科学与技术, 2024, 13(8): 2623-2633. |
[12] | 葛群, 梁涛, 侯彬, 王万红, 张龙, 吴梁玉, 张程宾, 刘向东. 植物工厂储热装置性能强化研究[J]. 储能科学与技术, 2024, 13(8): 2687-2695. |
[13] | 刘松燕, 王卫良, 彭世亮, 吕俊复. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. |
[14] | 赵晨阳, 于晓琨, 陶于兵. 改性氧化铜/正十八烷复合相变材料制备及性能表征研究[J]. 储能科学与技术, 2024, 13(6): 1786-1793. |
[15] | 张云峰, 张学文, 钟威, 蒋杜伟, 陈泽伟, 张杰. 石蜡与低熔点合金双级联相变材料强化板翅式散热器换热性能的数值模拟[J]. 储能科学与技术, 2024, 13(5): 1460-1470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||