储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3447-3462.doi: 10.19799/j.cnki.2095-4239.2025.0258
• 储能系统与工程 • 上一篇
李嗣文1,2(), 朱轶林2,3, 徐玉杰1,2,3, 周学志1,2,3, 富征阳2,3, 吴佳骏2,3, 韩若凝2,3, 程柳1,2,3, 张华良1,2,3, 陈海生1,2,3(
)
收稿日期:
2025-03-24
修回日期:
2025-05-04
出版日期:
2025-09-28
发布日期:
2025-09-05
通讯作者:
徐玉杰,陈海生
E-mail:17851006087@163.com;chen_hs@mail.etp.ac.cn
作者简介:
李嗣文(2000—),男,硕士研究生,主研究方向为综合能源系统,E-mail:17851006087@163.com;
基金资助:
Siwen LI1,2(), Yilin ZHU2,3, Yujie XU1,2,3, Xuezhi ZHOU1,2,3, Zhengyang FU2,3, Jiajun WU2,3, Ruoning HAN2,3, Liu CHENG1,2,3, Hualiang ZHANG1,2,3, Haisheng CHEN1,2,3(
)
Received:
2025-03-24
Revised:
2025-05-04
Online:
2025-09-28
Published:
2025-09-05
Contact:
Yujie XU, Haisheng CHEN
E-mail:17851006087@163.com;chen_hs@mail.etp.ac.cn
摘要:
综合能源系统(IES)具有高能效及低排放量等优势。针对IES传统运行策略导致的供热侧与用户侧不匹配、弃热多等问题,本工作构建了含电热混合储能的IES,提出一种分时序灵活运行策略,考虑设备变工况特性以及能量品质系数法开展三目标优化,基于能值理论研究综合能源系统的可持续性。研究结果表明,相比于常规运行策略,分时序灵活运行策略下IES的能源综合利用率提升5%,运行成本降低6.22×105 CNY,在能值分析中其具有最高的可持续性发展指数(4.18)。不同策略下燃气锅炉容量都较大,运行过程中其为主要供热单元。同时,天然气价格对系统可持续性影响幅度为36%左右,电价影响幅度较大,最高可达72.33%。
中图分类号:
李嗣文, 朱轶林, 徐玉杰, 周学志, 富征阳, 吴佳骏, 韩若凝, 程柳, 张华良, 陈海生. 分时序灵活运行策略下综合能源系统的三目标优化与能值分析[J]. 储能科学与技术, 2025, 14(9): 3447-3462.
Siwen LI, Yilin ZHU, Yujie XU, Xuezhi ZHOU, Zhengyang FU, Jiajun WU, Ruoning HAN, Liu CHENG, Hualiang ZHANG, Haisheng CHEN. Three-objective optimization and emergy analysis of integrated energy system under time-of-use flexible operation strategy[J]. Energy Storage Science and Technology, 2025, 14(9): 3447-3462.
表1
能值转换率[19]"
代号 | 名称 | 能值转换率 |
---|---|---|
R1 | 太阳辐射 | 1.00×106 sej/MJ |
R2 | 风能 | 5.89×107 sej/MJ |
R3 | 氧气 | 5.16×1010 sej/kg |
R4 | 水 | 6.64×108 sej/kg |
N1 | 天然气 | 7.73×107 sej/MJ |
F0 | 购电 | 4.325×1011 sej/CNY |
F1 | 光伏成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F2 | 风机成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F3 | 电储能系统成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F4 | 吸收式制冷成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F5 | 燃气轮机成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F6 | 燃气锅炉成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F7 | 电锅炉成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F8 | 电制冷成本(投资、运维、人力) | 4.325×1011 sej/CNY |
F9 | 热储能系统成本(投资、运维、人力) | 4.325×1011 sej/CNY |
表3
主要设备的经济参数"
设备 | 参数 | 数值 |
---|---|---|
风机 | 投资成本 | 2800 CNY/kW |
运维成本 | 0.03 CNY/kW | |
寿命 | 20 a | |
光伏 | 投资成本 | 2400 CNY/kW |
运维成本 | 0.05 CNY/kW | |
寿命 | 20 a | |
吸收式制冷机 | 投资成本 | 1200 CNY/kW |
运维成本 | 0.048 CNY/kW | |
寿命 | 20 a | |
电制冷机 | 投资成本 | 1100 CNY/kW |
运维成本 | 0.06 CNY/kW | |
寿命 | 20 a | |
电池 | 投资成本 | 2000 CNY/kW |
运维成本 | 0.018 CNY/kW | |
寿命 | 10 a | |
燃气轮机 | 投资成本 | 3000 CNY/kW |
运维成本 | 0.05 CNY/kW | |
寿命 | 20 a | |
燃气锅炉 | 投资成本 | 1150 CNY/kW |
运维成本 | 0.04 CNY/kW | |
寿命 | 20 a | |
储热水罐 | 投资成本 | 140 CNY/kW |
运维成本 | 0.016 CNY/kW | |
寿命 | 10 a |
[1] | XIA W J, APERGIS N, BASHIR M F, et al. Investigating the role of globalization, and energy consumption for environmental externalities: Empirical evidence from developed and developing economies[J]. Renewable Energy, 2022, 183: 219-228. DOI: 10.1016/j.renene.2021.10.084. |
[2] | PERERA A T D, JAVANROODI K, WANG Y, et al. Urban cells: Extending the energy hub concept to facilitate sector and spatial coupling[J]. Advances in Applied Energy, 2021, 3: 100046. DOI: 10.1016/j.adapen.2021.100046. |
[3] | FARROKHIFAR M, NIE Y H, POZO D. Energy systems planning: A survey on models for integrated power and natural gas networks coordination[J]. Applied Energy, 2020, 262: 114567. DOI: 10.1016/j.apenergy.2020.114567. |
[4] | 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95. DOI: 10.19912/j.0254-0096.tynxb.2019-0763. |
WANG Y Z, KANG L G, ZHANG J, et al. Development history, typical form and future trend of integrated energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 84-95. DOI: 10.19912/j.0254-0096.tynxb.2019-0763. | |
[5] | 王庆刚, 杨谋存, 朱跃钊, 等. 可再生能源多能互补热电气联产系统评价方法综述[J]. 电网技术, 2021, 45(3): 937-950. DOI: 10.13335/j.1000-3673.pst.2020.1414. |
WANG Q G, YANG M C, ZHU Y Z, et al. Review on evaluation methods of combined heating, power and biogas system coupled with renewable energy[J]. Power System Technology, 2021, 45(3): 937-950. DOI: 10.13335/j.1000-3673.pst.2020.1414. | |
[6] | WANG Y Z, HAN Y B, SHEN J, et al. Data center integrated energy system for sustainability: Generalization, approaches, methods, techniques, and future perspectives[J]. The Innovation Energy, 2024, 1(1): 100014. DOI: 10.59717/j.xinn-energy.2024. 100014. |
[7] | LIU Z Q, CUI Y P, WANG J Q, et al. Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties[J]. Energy, 2022, 254: 124399. DOI: 10.1016/j.energy.2022.124399. |
[8] | QIAO Y Y, HU F, XIONG W, et al. Multi-objective optimization of integrated energy system considering installation configuration[J]. Energy, 2023, 263: 125785. DOI: 10.1016/j.energy.2022.125785. |
[9] | ELTAMALY A M, AL-SAUD M S, ABOKHALIL A G, et al. Photovoltaic maximum power point tracking under dynamic partial shading changes by novel adaptive particle swarm optimization strategy[J]. Transactions of the Institute of Measurement and Control, 2020, 42(1): 104-115. DOI: 10.1177/0142331219865627. |
[10] | 陈克文, 王帅, 韩兴臣, 等. 考虑风电消纳的冷热电联供型综合能源系统多目标日前优化调度[J]. 电气工程学报, 2022, 17(3): 170-176. |
CHEN K W, WANG S, HAN X C, et al. Multi-objective day-ahead optimization scheduling of integrated energy system with CCHP considering wind power consumption[J]. Journal of Electrical Engineering, 2022, 17(3): 170-176. | |
[11] | SHEN H T, ZHANG H L, XU Y J, et al. Multi-objective capacity configuration optimization of an integrated energy system considering economy and environment with harvest heat[J]. Energy Conversion and Management, 2022, 269: 116116. DOI: 10.1016/j.enconman.2022.116116. |
[12] | LIU N, HE L, YU X H, et al. Multiparty energy management for grid-connected microgrids with heat- and electricity-coupled demand response[J]. IEEE Transactions on Industrial Informatics, 2017, 14(5): 1887-1897. DOI: 10.1109/TII.2017.2757443. |
[13] | GU Q Y, REN H B, GAO W J, et al. Integrated assessment of combined cooling heating and power systems under different design and management options for residential buildings in Shanghai[J]. Energy and Buildings, 2012, 51: 143-152. DOI: 10.1016/j.enbuild.2012.04.023. |
[14] | 肖定垚, 王承民, 曾平良, 等. 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 38(6): 1569-1576. DOI: 10.13335/j.1000-3673.pst.2014.06.023. |
XIAO D Y, WANG C M, ZENG P L, et al. A survey on power system flexibility and its evaluations[J]. Power System Technology, 2014, 38(6): 1569-1576. DOI: 10.13335/j.1000-3673.pst.2014.06.023. | |
[15] | 王安, 杨绮, 王菁, 等. 含储热的热电联产机组经济性与灵活性多目标优化算法[J]. 电力工程技术, 2024, 43(2): 248-259. |
WANG A, YANG Q, WANG J, et al. Multi-objective optimization algorithm for economy and flexibility of cogeneration unit with heat storage[J]. Electric Power Engineering Technology, 2024, 43(2): 248-259. | |
[16] | 陈晚晴, 穆云飞, 贾宏杰, 等. 考虑设备变工况特性的区域综合能源系统优化调度方法[J]. 电网技术, 2021, 45(3): 951-958. DOI: 10.13335/j.1000-3673.pst.2020.1149. |
CHEN W Q, MU Y F, JIA H J, et al. Operation optimization method for regional integrated energy system considering part-load performances of devices[J]. Power System Technology, 2021, 45(3): 951-958. DOI: 10.13335/j.1000-3673.pst.2020.1149. | |
[17] | HU X, ZHANG H, CHEN D W, et al. Multi-objective planning for integrated energy systems considering both exergy efficiency and economy[J]. Energy, 2020, 197: 117155. DOI: 10.1016/j.energy.2020.117155. |
[18] | 王永真, 张靖, 潘崇超, 等. 综合智慧能源多维绩效评价指标研究综述[J]. 全球能源互联网, 2021, 4(3): 207-225. DOI: 10.19705/j.cnki.issn2096-5125.2021.03.002. |
WANG Y Z, ZHANG J, PAN C C, et al. Multi-dimensional performance evaluation index review of integrated and intelligent energy[J]. Journal of Global Energy Interconnection, 2021, 4(3): 207-225. DOI: 10.19705/j.cnki.issn2096-5125.2021.03.002. | |
[19] | TERA I, ZHANG S G, LIU G L. A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment[J]. Energy, 2024, 295: 131015. DOI: 10.1016/j.energy.2024.131015. |
[20] | 王永真, 朱轶林, 康利改, 等. 计及能值的中国电力能源系统可持续性综合评价[J]. 全球能源互联网, 2021, 4(1): 19-27. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.004. |
WANG Y Z, ZHU Y L, KANG L G, et al. Comprehensive sustainability evaluation of China's power system based on emergy analysis[J]. Journal of Global Energy Interconnection, 2021, 4(1): 19-27. DOI: 10.19705/j.cnki.issn2096-5125.2021.01.004. | |
[21] | DEYMI-DASHTEBAYAZ M, NORANI M. Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111511. DOI: 10.1016/j.rser.2021.111511. |
[22] | KHOSRAVI S, ROY D, KHOSHBAKHTI SARAY R, et al. Techno-economic analysis, emergy assessment, and optimization using response surface methodology of a solar and biomass-based co-generation system[J]. Energy Conversion and Management, 2024, 307: 118376. DOI: 10.1016/j.enconman.2024.118376. |
[23] | ZHANG H L, GUAN X, DING Y, et al. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation[J]. Journal of Cleaner Production, 2018, 183: 1207-1215. DOI: 10.1016/j.jclepro.2018.02.170. |
[24] | 田立亭, 程林, 郭剑波, 等. 基于能值分析的多能互补综合能源系统价值评估方法[J]. 电网技术, 2019, 43(8): 2925-2934. DOI: 10.13335/j.1000-3673.pst.2018.2310. |
TIAN L T, CHENG L, GUO J B, et al. Multi-energy system valuation method based on emergy analysis[J]. Power System Technology, 2019, 43(8): 2925-2934. DOI: 10.13335/j.1000-3673.pst.2018.2310. | |
[25] | KARMELLOS M, MAVROTAS G. Multi-objective optimization and comparison framework for the design of distributed energy systems[J]. Energy Conversion and Management, 2019, 180: 473-495. DOI: 10.1016/j.enconman.2018.10.083. |
[26] | 冯志兵, 金红光. 燃气轮机冷热电联产系统与蓄能变工况特性[J]. 中国电机工程学报, 2006, 26(4): 25-30. DOI: 10.3321/j.issn: 0258-8013.2006.04.006. |
FENG Z B, JIN H G. Part-load performance of CCHP with gas turbine and storage system[J]. Proceedings of the CSEE, 2006, 26(4): 25-30. DOI: 10.3321/j.issn: 0258-8013.2006.04.006. | |
[27] | WEI D J, CHEN A L, SUN B, et al. Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system[J]. Energy, 2016, 98: 296-307. DOI: 10.1016/j.energy.2016.01.027. |
[28] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24. DOI: 10.7500/AEPS20171002004. |
YANG J W, ZHANG N, WANG Y, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24. DOI: 10.7500/AEPS20171002004. | |
[29] | MA T F, WU J Y, HAO L L, et al. The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141. DOI: 10.1016/j.energy.2018.06.198. |
[30] | FU X Q, SUN H B, GUO Q L, et al. Uncertainty analysis of an integrated energy system based on information theory[J]. Energy, 2017, 122: 649-662. DOI: 10.1016/j.energy.2017.01.111. |
[31] | 薛屹洵, 郭庆来, 孙宏斌, 等. 面向多能协同园区的能源综合利用率指标[J]. 电力自动化设备, 2017, 37(6): 117-123. DOI: 10.16081/j.issn.1006-6047.2017.06.016. |
XUE Y X, GUO Q L, SUN H B, et al. Comprehensive energy utilization rate for park-level integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6): 117-123. DOI: 10.16081/j.issn.1006-6047.2017.06.016. | |
[32] | WANG Y Z, ZHANG L L, SONG Y, et al. State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113835. DOI: 10.1016/j.rser.2023.113835. |
[1] | 栗占伟, 樊东方, 曾超, 何雯倩, 何金. 考虑风光消纳的储能系统容量优化配置及运行策略研究[J]. 储能科学与技术, 2024, 13(8): 2713-2725. |
[2] | 熊阳阳, 于艾清, 王育飞, 薛花. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899. |
[3] | 黄思远, 王晨, 梁婷, 姜竹, 李佳静, 折晓会, 张小松. 液态空气储能耦合综合能源系统热电联储联供优化配置研究[J]. 储能科学与技术, 2024, 13(6): 1929-1939. |
[4] | 张杨, 陶生虎, 张笑波, 郑东风, 陈洲奕. 配电网储能设备运行策略与容量的协调优化[J]. 储能科学与技术, 2024, 13(3): 903-905. |
[5] | 郝俊红, 杜小泽, 徐超, 巨星, 肖万里, 陈群, 杨勇平. 新工科储能专业《储能与综合能源系统》的课程建设与实践[J]. 储能科学与技术, 2024, 13(3): 1074-1082. |
[6] | 罗世刚, 张伟, 李威武, 白永利. 考虑电/热储能灵活经济调控的综合能源系统与产消者日前协调优化运行策略[J]. 储能科学与技术, 2023, 12(2): 486-495. |
[7] | 焦昊东, 于艾清, 王育飞. 考虑换电站的综合能源系统低碳经济调度[J]. 储能科学与技术, 2023, 12(10): 3254-3264. |
[8] | 王俊伟, 任艺, 郭尊, 张岩. 基于综合需求响应和奖惩阶梯型碳交易的综合能源系统优化调度[J]. 储能科学与技术, 2022, 11(7): 2177-2187. |
[9] | 李昊, 刘畅, 苗博, 张静. 考虑冷热电互补及储能系统的多园区综合能源系统协调优化调度[J]. 储能科学与技术, 2022, 11(5): 1482-1491. |
[10] | 韦古强, 胡从川, 刘乙学, 崔双双, 李红. 基于液化空气储能的综合能源系统经济性分析[J]. 储能科学与技术, 2021, 10(6): 2403-2410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||