储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3599-3610.doi: 10.19799/j.cnki.2095-4239.2025.0033

• 储能测试与评价 • 上一篇    

基于变分模态分解与特征增强的锂电池健康状态估计方法

张吴哲1(), 蔡志端2,3(), 吴成傲1, 郑炜1, 童嘉阳2   

  1. 1.湖州师范学院工学院
    2.湖州学院智能制造学院
    3.湖州市绿色能源材料与电池梯次利用重点实验室,浙江 湖州 313000
  • 收稿日期:2025-01-08 修回日期:2025-01-13 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 蔡志端 E-mail:1035176174@qq.com;caizhiduan@zjhzu.edu.cn
  • 作者简介:张吴哲(2001—),男,硕士研究生,研究方向:锂电池性能状态估计方法,E-mail:1035176174@qq.com
  • 基金资助:
    浙江省湖州市基础公益研究计划项目(2022gz02)

State-of-health assessment of lithium batteries using variational mode decomposition and feature enhancement under capacity regeneration phenomena

Wuzhe ZHANG1(), Zhiduan CAI2,3(), Chengao WU1, Wei ZHENG1, Jiayang TONG2   

  1. 1.School of Engineering, Huzhou University
    2.School of Intelligent Manufacturing, Huzhou University
    3.Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, Huzhou 313000, Zhejiang, China
  • Received:2025-01-08 Revised:2025-01-13 Online:2025-09-28 Published:2025-09-05
  • Contact: Zhiduan CAI E-mail:1035176174@qq.com;caizhiduan@zjhzu.edu.cn

摘要:

锂电池因其高能量密度、生命周期长等优点,已广泛应用于电动汽车、储能系统和便携设备等领域。然而,锂电池在使用过程中不可避免地会出现容量再生现象,这一现象会影响电池健康状态的评估精度。针对这一问题,本工作提出了一种结合变分模态分解和生成对抗网络的电池健康状态估计方法,以降低容量再生现象对电池健康状态评估精度的影响。首先,通过变分模态分解对锂电池在放电过程中反映容量再生现象的等压降放电时间特征量进行多尺度分解,并根据皮尔逊相关系数分析,分离出主退化趋势分量与局部波动分量,以更好地表征电池健康状态。主退化趋势分量反映了电池整体退化的趋势,而局部波动分量则反映了容量再生现象引起的局部变化特性。接着,为了进一步增强局部波动分量中与容量再生现象相关的特征,对其进行傅里叶变换,提取其中反映容量再生现象的中低频段分量。针对这些频段的分量,使用生成对抗网络进行数据生成,将生成的数据与变分模态分解后的多特征结合,构建新的多特征集;然后,采用支持向量机算法对新的多特征集进行训练,实现对锂电池健康状态的准确估计;最后,基于NASA数据集和CALCE数据集进行验证实验。实验结果表明,所提出的方法相比于传统方法,均方根误差均能控制在4.5%以内,能够有效降低容量再生现象对电池健康评估精度的影响。

关键词: 容量再生, 局部波动分量, 傅里叶变换, 支持向量机

Abstract:

Owing to their high energy density and long life cycle, lithium batteries have been widely used in electric vehicles, energy storage systems, and portable devices. However, capacity regeneration is an inevitable phenomenon during battery use, which influences the accuracy of battery health assessment. To reduce the influence of capacity regeneration on assessment accuracy, a new method combining variational mode decomposition and a generative adversarial network is proposed. First, variational mode decomposition is applied to decompose the iso-pressure-drop discharge-time characteristic, which reflects the capacity regeneration phenomenon during lithium battery discharge. The main degradation-trend component and local fluctuation component are then separated using Pearson correlation coefficient analysis, enabling a better characterization of battery health. The main degradation-trend component represents the overall degradation of the battery, while the local fluctuation component captures the variations caused by capacity regeneration. Second, to further enhance the features related to local wave components and the capacity regeneration phenomenon, a Fourier transform is used to extract the mid- and low-frequency components that reflect capacity regeneration. For components in these frequency bands, a generative adversarial network is employed to generate additional data. These generated data are then combined with the multifeature set obtained from variational mode decomposition to form a new, enriched multifeature set. Next, a support vector machine algorithm is used to train this new multifeature set to achieve accurate estimation of the battery's state of health. Finally, validation experiments are conducted using NASA and CALCE datasets. The experimental results show that, compared with traditional methods, the proposed method keeps the root-mean-square error within 4.5%, effectively reducing the influence of capacity regeneration on battery health assessment accuracy.

Key words: capacity regeneration, local fluctuation component, Fourier transform, support vector machine

中图分类号: