储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1271-1284.doi: 10.19799/j.cnki.2095-4239.2019.0233
• 热点点评 • 上一篇
季洪祥, 起文斌, 田丰, 田孟羽, 金周, 闫勇, 张华, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2019-10-15
修回日期:
2019-10-18
出版日期:
2019-11-01
发布日期:
2019-11-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
季洪祥(1997-),男,硕士研究生,从事锂离子电池正极材料的研究,E-mail:sdujhx@163.com
基金资助:
JI Hongxiang, QI Wenbin, TIAN Feng, TIAN Mengyu, JIN Zhou, YAN Yong, ZHANG Hua, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2019-10-15
Revised:
2019-10-18
Online:
2019-11-01
Published:
2019-11-01
摘要: 该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2019年8月1日至2019年9月30日上线的锂电池研究论文,共有3077篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,金属锂负极的研究侧重于通过表面覆盖层的设计来提高其循环性能。电解液添加剂、固态电解质电池、锂硫电池的论文也有多篇。原位分析偏重于界面SEI和电极反应机理,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析等。除了以材料为主的研究之外,还有多篇针对电池分析技术的研究论文。
中图分类号:
季洪祥, 起文斌, 田丰, 田孟羽, 金周, 闫勇, 张华, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2019.08.01-2019.09.30)[J]. 储能科学与技术, 2019, 8(6): 1271-1284.
JI Hongxiang, QI Wenbin, TIAN Feng, TIAN Mengyu, JIN Zhou, YAN Yong, ZHANG Hua, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Aug.01, 2019 to Sep. 30, 2019)[J]. Energy Storage Science and Technology, 2019, 8(6): 1271-1284.
[1] WANG L, MA J, WANG C, et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability[J]. Advanced Science, 2019, 6(12):1900355. [2] SUN Z, XU L, DONG C, et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance[J]. Nano Energy, 2019, 63:103887. [3] RYU H H, PARK G T, YOON C S, et al. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for nextgeneration lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31):18580-18588. [4] AHMED S, POKLE A, SCHWEIDLER S, et al. The role of intragranular nanopores in capacity fade of nickel-rich layered Li(Ni1-x-yCoxMny)O2 cathode materials[J]. ACS Nano, 2019, doi:10.1021/acsnano. 9b05047. [5] JUNG R, LINSENMANN F, THOMAS R, et al. Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cell[J]. Journal of the Electrochemical Society, 2019, 166(2):A378-A389. [6] ZHANG M, ZHANG J, YANG J, et al. Concentrated electrolyte boosting high-temperature cycling stability of LiCoO2/graphite cell[J]. Chemical Communications, 2019, 55(66):9785-9788. [7] WANG G, CHANDRASEKHAR N, BISWAL B P, et al. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage[J]. Advanced Materials, 2019, 31(28):1901478. [8] LEE S, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials[J]. Angewandte Chemie-International Edition, 2019, 58(31):10478-10485. [9] WANG A, DENG Q, DENG L, et al. Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes[J]. Advanced Functional Materials, 2019, 29(25):1902630. [10] XIE J D, LIU W J, LI C, et al. Superior coulombic efficiency of lithium anodes for rechargeable batteries utilizing high-concentration ether electrolytes[J]. Electrochimica Acta, 2019, 319:625-33. [11] SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10:900. [12] GUO Y, NIU P, LIU Y, et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes[J]. Advanced Materials, 2019, 31(27):1900342. [13] CAO Z, LI B, YANG S. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithiumcopper-lithium arrays[J]. Advanced Materials, 2019, 31(29):1901310. [14] FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770):511-515. [15] FU R, WU Y, FAN C, et al. Reactivating Li2O with nano-Sn to achieve ultrahigh initial coulombic efficiency SiO anodes for Li-ion batteries[J]. ChemSusChem, 2019, 12(14):3377-3382. [16] LINDGREN F, REHNLUND D, PAN R, et al. On the capacity losses seen for optimized nano-Si composite electrodes in Li-metal halfcells[J]. Advanced Energy Materials, 2019, 9(33):1901608. [17] RICHTER K, WALDMANN T, KASPER M, et al. Surface film formation and dissolution in Si/C anodes of Li-ion batteries:A glow discharge optical emission spectroscopy depth profiling study[J]. Journal of Physical Chemistry C, 2019, 123(31):18795-18803. [18] ZHANG F, ZHU G, WANG K, et al. Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals[J]. Journal of Materials Chemistry A, 2019, 7(29):17426-17434. [19] SUNG J, MA J, CHOI S H, et al. Fabrication of lamellar nanosphere structure for effective stress-management in large-volume-variation anodes of high-energy lithium-ion batteries[J]. Advanced Materials, 2019, 31(33):1900970. [20] JUNG C H, KIM K H, HONG S H. Stable silicon anode for lithiumion batteries through covalent bond formation with a binder via esterification[J]. ACS Applied Materials & Interfaces, 2019, 11(30):26753-26763. [21] KANG T, CHEN J, CUI Y, et al. Three-dimensional rigidityreinforced SiO x anodes with stabilized performance using an aqueous multicomponent binder technology[J]. ACS Applied Materials & Interfaces, 2019, 11(29):26038-26046. [22] ATTIA E, HASSAN F, LI M, et al. Multifunctional nano-architecting of Si electrode for high-performance lithium-ion battery anode[J]. Journal of the Electrochemical Society, 2019, 166(13):A2776-A2783. [23] FANG S, SHEN L, LI S, et al. Alloying reaction confinement enables high-capacity and stable anodes for lithium-ion batteries[J]. ACS Nano, 2019, 13(8):9511-9519. [24] LIANG J, SUN H, ZHAO Z, et al. Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes[J]. iScience, 2019, 19:728-736. [25] KIM S, OGUCHI H, TOYAMA N, et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nature Communications, 2019, 10:1081. [26] NAGATA H, AKIMOTO J. Improvement of inter-particle contact in positive electrodes using the composite deformable solid electrolyte in an oxide-type all-solid-state lithium ion battery[J]. Chemistry Letters, 2019, 48(8):891-893. [27] AHMED F, CHOI I, RAHMAN M M, et al. Remarkable conductivity of a self-healing single-ion conducting polymer electrolyte, poly(ethylene-co-acrylic lithium (fluoro sulfonyl)imide), for all-solidstate Li-ion batteries[J]. ACS applied materials & interfaces, 2019, 11(38):34930-34938. [28] AGOSTINI M, SADD M, XIONG S, et al. Designing a safe electrolyte enabling long-life Li/S batteries[J]. ChemSusChem, 2019, 12(18):4176-4184. [29] TORNHEIM A, GARCIA J C, SAHORE R, et al. Decomposition of phosphorus-containing additives at a charged NMC surface through potentiostatic holds[J]. Journal of the Electrochemical Society, 2019, 166(4):A440-A447. [30] ZHENG X, HUANG T, FANG G, et al. Di(methylsulfonyl) ethane:new electrolyte additive for enhancing LiCoO2/electrolyte Interface stability under high voltage[J]. ACS Applied Materials & Interfaces, 2019, 11(39):36244-36251. [31] WANG C, XING L, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries[J]. Nature Communications, 2019, 10:3423. [32] YANG Y, DAVIES D M, YIN Y, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8):1986-2000. [33] JIA H, ZOU L, GAO P, et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes[J]. Advanced Energy Materials, 2019, 9(31):1900784. [34] MENG J, CHU F, HU J, et al. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries[J]. Advanced Functional Materials, 2019, 29(30):1902220. [35] YAMAGUCHI K, DOMI Y, USUI H, et al. Effect of film-forming additive in ionic liquid electrolyte on electrochemical performance of Si negative-electrode for LIBs[J]. Journal of the Electrochemical Society, 2019, 166(2):A268-A276. [36] HILBIG P, IBING L, WINTER M, et al. Butyronitrile-based electrolytes for fast charging of lithium-ion batteries[J]. Energies, 2019, 12(15):2869. [37] LAN J, ZHENG Q, ZHOU H, et al. Stabilizing a high-voltage lithiumrich layered oxide cathode with a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2019, 11(32):28841-28850. [38] LI W, DOLOCAN A, LI J, et al. Ethylene carbonate-free electrolytes for high-nickel layered oxide cathodes in lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(29):1901152. [39] TAKADA K, YAMADA Y, YAMADA A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Materials & Interfaces, 2019, 11(39):35770-35776. [40] WANG X, XUE W, XU Z, et al. The study of how the amount of adiponitrile impacts on the performance of LiNi0.5Mn1.5O4 battery[J]. Journal of the Electrochemical Society, 2019, 166(4):A802-A809. [41] XIAO Z, WANG R, LI Y, et al. Electrochemical analysis for enhancing interface layer of spine LiNi0.5Mn1.5O4 using p-toluenesulfonyl isocyanate as electrolyte additive[J]. Frontiers in Chemistry, 2019, 7. [42] ZHAO D, SONG S, YE X, et al. New insight into the mechanism of LiPO2F2 on the interface of high-voltage cathode LiNi0.5Mn1.5O4 with truncated octahedral structure[J]. Applied Surface Science, 2019, 491:595-606. [43] CHEN J, YANG H, ZHANG X, et al. Highly reversible lithium metal anode and lithium-sulfur batteries enabled by an intrinsic safe electrolyte[J]. ACS Applied Materials & Interfaces, 2019, 11(36):33419-33427. [44] CHOUDHURY S, TU Z, NIJAMUDHEEN A, et al. Stabilizing polymer electrolytes in high-voltage lithium batteries[J]. Nature Communications, 2019, 10:3091. [45] GAO X, WU F, MARIANI A, et al. Concentrated ionic-liquidbased electrolytes for high-voltage lithium batteries with improved performance at room temperature[J]. ChemSusChem, 2019, 12(18):4185-4193. [46] LEE S H, HWANG J-Y, PARK S-J, et al. Adiponitrile (C6H8N2):A new bi-functional additive for high-performance Li-metal batteries[J]. Advanced Functional Materials, 2019, 29(30):1902496. [47] ZHAO W, ZHENG B, LIU H, et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance[J]. Nano Energy, 2019, 63:103815. [48] PAN R, SUN R, WANG Z, et al. Double-sided conductive separators for lithium-metal batteries[J]. Energy Storage Materials, 2019, 21:464-473. [49] LEE J H, KIM S, CHO M, et al. Crosslinked gel polymer electrolytes for Si anodes in Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(13):A2755-A2761. [50] CHO W, PARK J, KIM K, et al. Sulfide-compatible conductive and adhesive glue-like interphase engineering for sheet-type all-solid-state battery[J]. Small (Weinheim an der Bergstrasse, Germany), 2019, doi:10.1002/smll.201902138. [51] SHIN M, GEWIRTH A A. Incorporating solvate and solid electrolytes for all-solid-state Li2S batteries with high capacity and long cycle life[J]. Advanced Energy Materials, 2019, 9(26):1900938. [52] TAKEUCHI T, KOJIMA T, KAGEYAMA H, et al. All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency[J]. Energy Technology, 2019, doi:10.1002/ente.201900509. [53] CAI M, LU Y, SU J, et al. In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2019, 11(38):35030-35038. [54] CHENG M, JIANG Y, YAO W, et al. Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries[J]. Advanced Materials, 2018, 30(39):1800615. [55] KIM K, PARK J, JEONG G, et al. Rational design of a composite electrode to realize a high-performance all-solid-state battery[J]. ChemSusChem, 2019, 12(12):2637-2643. [56] OH D Y, HA A R, LEE J E, et al. Wet-chemical tuning of Li3-xPS4(0≤ x ≤ 0.3) enabled by dual solvents for all-solid-state lithium-ion batteries[J]. ChemSusChem, 2019, doi:10.1002/cssc.201901850. [57] MO F, RUAN J, SUN S, et al. Inside or outside:origin of lithium dendrite formation of all solid-state electrolytes[J]. Advanced Energy Materials, 2019, doi:10.1002/aenm.201902123. [58] LIANG J, LI X, ZHAO Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38):1902125. [59] LAI Y, NIE H, XU X, et al. Interfacial molecule mediators in cathodes for advanced Li-S batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(33):29978-29984. [60] ZHANG X-P, SUN Y-Y, SUN Z, et al. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithiumoxygen batteries[J]. Nature Communications, 2019, 10:3543. [61] HE Q, GORLIN Y, PATEL M U M, et al. Unraveling the correlation between solvent properties and sulfur redox behavior in lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165(16):A4027-A4033. [62] HWANG J Y, PARK S J, YOON C S, et al. Customizing a Li-metal battery that survives practical operating conditions for electric vehicle applications[J]. Energy & Environmental Science, 2019, 12(7):2174-2184. [63] LEE S, CHOI H, EOM K. Enhancing the electrochemical performances of a tellurium-based cathode for a high-volumetric capacity Li battery via a high-energy ball mill with sulfur edge-functionalized carbon[J]. Journal of Power Sources, 2019, 430:112-119. [64] GUO H, HOU G, LI D, et al. High current enabled stable lithium anode for ultralong cycling life of lithium-oxygen batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(34):30793-30800. [65] ZHANG H, JUDEZ X, SANTIAGO A, et al. Fluorine-free noble salt anion for high-performance all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(25):1900763. [66] REN Y X, ZENG L, JIANG H R, et al. Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries[J]. Nature Communications, 2019, 10:3249. [67] PRITZL D, BUMBERGER A E, WETJEN M, et al. Identifying contact resistances in high-voltage cathodes by impedance spectroscopy[J]. Journal of the Electrochemical Society, 2019, 166(4):A582-A590. [68] WU X, XIA S, HUANG Y, et al. High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries[J]. Advanced Functional Materials, 2019, 29(34):1903961. [69] CHUNG S-H, MANTHIRAM A. A Li2S-TiS2-electrolyte composite for stable Li2S-based lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(30):1901397. [70] ANOTHUMAKKOOL B, WIEMERS-MEYER S, GUYOMARD D, et al. Cascade-type prelithiation approach for Li-ion capacitors[J]. Advanced Energy Materials, 2019, 9(27):1900078. [71] BERLINER M D, MCGILL B C, MAJEED M, et al. Electrochemical kinetics of lithium plating and stripping in solid polymer electrolytes:pulsed voltammetry[J]. Journal of the Electrochemical Society, 2019, 166(2):A297-A304. [72] ARIYOSHI K, MIZUTANI S, YAMADA Y. Electrochemical impedance analysis of Li[Li0.1Al0.1Mn1.8] O4 used as lithium-insertion electrodes by the diluted electrode method[J]. Journal of Power Sources, 2019, 435:226810. [73] NISHIMURA Y F, OKA H, NONAKA T, et al. Hard X-ray spectroscopic methods using emitted X-ray to understand charge compensation in positive electrode materials for lithium-ion batteries[J]. Journal of Power Sources, 2019, 434:226721. [74] HARKS P-P R M L, VERHALLEN T W, GEORGE C, et al. Spatiotemporal quantification of lithium both in electrode and in electrolyte with atomic precision via operando neutron absorption[J]. Journal of the American Chemical Society, 2019, 141(36):14280-14287. [75] FREYTAG A I, PAURIC A D, KRACHKOVSKIY S A, et al. In situ magic-angle spinning 7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design[J]. Journal of the American Chemical Society, 2019, 141(35):13758-13761. [76] BRUCK A M, WANG L, BRADY A B, et al. Energy-dispersive X-ray diffraction:operando visualization of electrochemical activity of thick electrodes[J]. Journal of Physical Chemistry C, 2019, 123(31):18834-18843. [77] MAIBACH J, KALLQUIST I, ANDERSSON M, et al. Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy[J]. Nature Communications, 2019, 10:3080. [78] SEITZMAN N, GUTHREY H, SULAS D B, et al. Toward all-solidstate lithium batteries:Three-dimensional visualization of lithium migration in beta-Li3PS4 ceramic electrolyte[J]. Journal of the Electrochemical Society, 2018, 165(16):A3732-A3737. [79] YU Y S, FARMAND M, KIM C, et al. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography[J]. Nature Communications, 2018, 9:921. [80] RAHE C, KELLY S T, RAD M N, et al. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells[J]. Journal of Power Sources, 2019, 433:126631. [81] HUEGER E, STAHN J, HEITJANS P, et al. Neutron reflectometry to measure in situ the rate determining step of lithium ion transport through thin silicon layers and interfaces[J]. Physical Chemistry Chemical Physics, 2019, 21(30):16445-16450. [82] CHERKASHININ G, HAUSBRAND R, JAEGERMANN W. Performance of Li-ion batteries:Contribution of electronic factors to the battery voltage[J]. Journal of the Electrochemical Society, 2019, 166(3):A5308-A5312. [83] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3):187-196. [84] MAHANKALI K, THANGAVEL N K, ARAVA L M R. In situ electrochemical mapping of lithium-sulfur battery interfaces using AFM-SECM[J]. Nano Letters, 2019, 19(8):5229-5236. [85] LI W, WANG H, ZHANG Y, et al. Flammability characteristics of the battery vent gas:A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24:100775. [86] KRAUSE A, TKACHEVA O, OMAR A, et al. In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(3):A5378-A5385. [87] WANG L, MENAKATH A, HAN F, et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nature Chemistry, 2019, 11(9):789-796. [88] HUANG W, ATTIA P M, WANG H, et al. Evolution of the solidelectrolyte interphase on carbonaceous anodes visualized by atomicresolution cryogenic electron microscopy[J]. Nano Letters, 2019, 19(8):5140-5148. [89] YOHANNES Y B, LIN S D, WU N L, et al. SEI grown on MCMB-electrode with fluoroethylene carbonate and vinylene carbonate additives as probed by in situ DRIFTS[J]. Journal of the Electrochemical Society, 2019, 166(13):A2741-A2748. [90] WU X, BILLAUD J, JERJEN I, et al. Operando visualization of morphological dynamics in all-solid-state batteries[J]. Advanced Energy Materials, 2019, 9(34):1901547. [91] BHANDARI A, GUPTA P K, BHATTACHARYA J, et al. Higher energy barrier for interfacial Li-ion transfer from EC/LiPF6 electrolyte into (010) LiFePO4 cathode surface than bulk Li-Ion diffusion within both cathode and electrolyte[J]. Journal of the Electrochemical Society, 2019, 166(13):A2966-A2972. [92] TSUCHIYA B, OHNISHI J, SASAKI Y, et al. In situ direct lithium distribution analysis around interfaces in an all-solid-state rechargeable lithium battery by combined ion-beam method[J]. Advanced Materials Interfaces, 2019, 6(14):1900100. [93] WANG J, HUANG W, PEI A, et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryoelectron microscopy[J]. Nature Energy, 2019, 4(8):664-670. [94] SUN H-H, DOLOCAN A, WEEKS J A, et al. In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery[J]. Journal of Materials Chemistry A, 2019, 7(30):17782-17789. [95] SEO H K, PARK J Y, CHANG J H, et al. Strong stress-composition coupling in lithium alloy nanoparticles[J]. Nature Communications, 2019, 10:3428. [96] FITZHUGH W, WU F, YE L, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21):1900807. [97] FROBOESE L, VAN DER SICHEL J F, LOELLHOEFFEL T, et al. Effect of microstructure on the ionic conductivity of an all solid-state battery electrode[J]. Journal of the Electrochemical Society, 2019, 166(2):A318-A328. [98] BOUIBES A, TAKENAKA N, SAHA S, et al. Microscopic origin of the solid electrolyte interphase formation in fire-extinguishing electrolyte:Formation of pure inorganic layer in high salt concentration[J]. The Journal of Physical Chemistry Letters, 2019, 10(19):5949-5955. [99] APPIAH W A, PARK J, BYUN S, et al. Time-effective accelerated cyclic aging analysis of lithium-ion batteries[J]. Chemelectrochem, 2019, 6(14):3714-3725. [100] WANG D, ZHANG Z, HONG B, et al. Self-sacrificial organic lithium salt enhanced initial Coulombic efficiency for safer and greener lithium-ion batteries[J]. Chemical Communications, 2019, 55:10737-10739. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||