1 |
ZHENG T, XING W, DAHN J R. Carbons prepared from coals for anodes of lithium-ion cells[J]. Carbon, 1996, 34(12): 1501-1507.
|
2 |
徐凯琪, 苏伟, 钟国彬, 等. 高容量锂离子电池硅基负极材料的研究进展[J]. 广东电力, 2017, 30(8): 1-7.
|
|
XU K Q, SU W, ZHONG G B, et al. Research progress of silicon-based anode materials for high-capacity lithium-ion batteries[J]. Guangdong Electric Power, 2017, 30(8): 1-7.
|
3 |
郭建. 锂离子电池负极材料的研究进展[J]. 炭素, 2018(3): 39-42.
|
|
GUO J. Research progress of negative electrode materials for lithium ion batteries[J]. Carbon, 2018(3): 39-42.
|
4 |
KALYANI P, ANITHA A. Biomass carbon & its prospects in electrochemical energy systems[J]. Hydrogen Energy, 2013, 38(10): 4034-4045.
|
5 |
ZHANG L, LIU Z, CUI G, et al. Biomass-derived materials for electrochemical energy storages[J]. Progress in Polymer Science, 2015, 43: 136-164.
|
6 |
LUX S F, PLACKE T, ENGELHARDT C, et al. Enhanced electrochemical performance of graphite anodes for lithium-ion batteries by dry coating with hydrophobic fumed silica[J]. Journal of the Electrochemical Society, 2012, 159(11): A1849-A1855.
|
7 |
KELLER M, VAALMA C, BUCHHOLZ D, et al. Cover picture: Development and characterization of high-performance sodium-ion cells based on layered oxide and hard carbon[J]. ChemElectroChem, 2016, 3(7): 1124-1132.
|
8 |
CAMPBELL B, IONESCU R, FAVORS Z, et al. Bio-derived, binderless, hierarchically porous carbon anodes for Li-ion batteries[J]. Scientific Reports, 2015, 5: doi: 10.1038/srep14575.
|
9 |
WU L, BUCHHOLZ D, VAALMA C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries[J]. Chemelectrochem, 2016, 3(2): 292-298.
|
10 |
YUN J H, JEONG S K, NAHM K S, et al. Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries[J]. Journal of Physics & Chemistry of Solids, 2007, 68(2): 182-188.
|
11 |
RYU D J, OH R G, SEO Y D, et al. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw[J]. Environmental Science & Pollution Research International, 2015, 22(14): 10405-10412.
|
12 |
ZHANG Y, ZHANG F, LI G D, et al. Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries[J]. Materials Letters, 2007, 61(30): 5209-5212.
|
13 |
STEPHAN A M, RAMESH S, KUMAR T P, et al. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries[J]. Materials Science & Engineering A, 2006, 430(1): 132-137.
|
14 |
BHARDWAJ S, JAYBHAYE S, SHARON M, et al. Carbon nanomaterial from tea leaves as an anode in lithium secondary batteries[J]. Asian Journal of Experiment Science, 2008, 22(2): 89-93.
|
15 |
FEY T K, LEE D C, LIN Y Y, et al. High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials[J]. Synthetic Metals, 2003, 139(1): 71-80.
|
16 |
FEY T K, LIN Y Y, HUANG K P, et al. Green energy anode materials: Pyrolytic carbons derived from peanut shells for lithium ion batteries[J]. Advanced Materials Research, 2012, 415/416/417: 1572-1585.
|
17 |
HWANG Y J, JEONG S K, SHIN J S, et al. High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries[J]. Journal of Alloys and Compounds, 2008, 448(1/2): 141-147.
|
18 |
PELED E, ESHKENAZI V, ROSENBERG Y. Study of lithium insertion in hard carbon made from cotton wool[J]. Journal of Power Sources, 1998, 76(2): 153-158.
|
19 |
LI W, CHEN M, WANG C. Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries[J]. Material Letters, 2011, 65(23/24): 3368-3370.
|
20 |
ZHENG P, LIU T, ZHANG J Z, et al. Sweet potato-derived carbon nanoparticles as anode for lithium ion battery[J]. RSC Advances, 2015, 5 (51): 40737-40741.
|
21 |
WANG J, YAN L, REN Q, et al. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery[J]. Electrochimica Acta, 2018, 291: 188-196.
|
22 |
ZHU Z, LIANG F, ZHOU Z, et al. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 6(4): 1513-1522.
|
23 |
BAI Y, LIU Y, LI Y, et al. Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone: Via environmentally friendly electrostatic spinning for sodium ion battery anodes[J]. RSC Advances, 2017, 7(9): 5519-5527.
|
24 |
LONG Q, CHEN W, XU H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitor[J]. Energy & Environmental Science, 2013, 6(8): 2497-2504.
|
25 |
HAO Y, CHEN C, YANG X, et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 338: 9-16.
|
26 |
LI X, GENG D, ZHANG Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications, 2011, 13(8): 822-825.
|
27 |
QIE L, CHEN W M, WANG Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24(15): 2047-2050.
|