1 |
DING N, DUAN J, XUE S, et al. Overall review of peaking power in China: status quo, barriers and solutions[J]. Renewable & Sustainable Energy Reviews, 2014, 42: 503-516.
|
2 |
刘树林, 钟世民, 陶翠翠, 等. 相变储能材料的研制与封装应用研究现状及展望[J]. 建筑热能通风空调, 2010, 29(6): 11-15.
|
|
LIU Shulin, ZHONG Shimin, TAO Cuicui, et al. The Study situation and prospect of the manufacture and encapsulated application of phase-change energy storage material[J]. Building Energy & Environment, 2010, 29(6): 11-15.
|
3 |
张宇, 俞国勤, 施明融, 等. 电力储能技术应用前景分析[J]. 华东电力, 2008(4): 91-93.
|
|
ZHANG Yu, YU Guoqin, SHI Mingrong, et al. Review of energy storage systems[J]. East China Electric Power, 2008(4): 91-93.
|
4 |
崔武军, 吴玉庭, 熊亚选, 等. 低熔点熔盐蓄热罐内温度分布与散热损失实验[J]. 化工学报, 2014, 65(S1): 162-167.
|
|
CUI Wujun, WU Yuting, XIONG Yaxuan, et al. Temperature distribution and heat loss experiments of low melting point molten salt heat storage tank[J]. CIESC Journal, 2014, 65(S1): 162-167.
|
5 |
程友良, 王月坤, 张夏, 等. 新型太阳能混合蓄热罐的放热特性[J]. 化工进展, 2018, 37(5): 1718-1725.
|
|
CHENG Youliang, WANG Yuekun, ZHANG Xia, et al. Heat release characteristics of new solar hybrid heat storage tank[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1718-1725.
|
6 |
孟强, 陈梦东, 胡晓, 等. 管内熔融盐强制对流传热的数值模拟[J]. 储能科学与技术, 2019, 8(3): 544-550.
|
|
MENG Qiang, CHEN Mengdong, HU Xiao, et al. Numerical simulation of forced convective heat transfer of molten salt in tubes[J]. Energy Storage Science and Technology, 2019, 8(3): 544-550.
|
7 |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318-345.
|
8 |
孟锋, 安青松, 郭孝峰, 等. 蓄热过程强化技术的应用研究进展[J]. 化工进展, 2016, 35(5): 1273-1281.
|
|
MENG Feng, AN Qingsong, GUO Xiaofeng, et al. Research progress in application of heat storage enhancement technology[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1273-1281.
|
9 |
徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190.
|
|
XU Zhiguo, ZHAO Changying, JI Yunan, et al. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2019, 8(3): 544-550.
|
10 |
YUAN Yanping, CAO Xiaoling, BAI Li, et al. Melting behaviors of capric acid in rectangular enclosure[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 236-240.
|
11 |
ASSIS E, KATSMAN L, ZISKIND G, et al. Numerical and experimental study of melting in a spherical shell[J]. International Journal of Heat & Mass Transfer, 2007, 50(9/10): 1790-1804.
|
12 |
HOSSEINIZADEH S F, DARZI A R. Unconstrained melting inside a sphere[J]. International Journal of Thermal Sciences, 2013, 63(63): 55-64.
|
13 |
NG K W, GONG Z X, MUJUMDAR A S. Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section[J]. Applied Thermal Engineering, 2000, 20: 893-912.
|
14 |
刘泛函, 王仕博, 王华, 等. 圆柱形相变蓄热单元性能的理论与数值研究[J]. 太阳能学报, 2015, 36(3): 575-580.
|
|
LIU Fanhan, WANGShibo, WANG Hua, et al. Theoretical cylindrical phase change thermal storage unit performance and numerical study[J]. Acta Energiae Solaris Sinica, 2015, 36(3): 575-580.
|
15 |
胡春妍, 袁艳平, 曹晓玲, 等. 环形单元内月桂酸熔化过程的传热特性[J]. 化工学报, 2014, 65(S2): 71-77.
|
|
HU Chunyan, YUAN Yanping, CAO Xiaoling, et al. Mechanism of heat transfer during melting of lauric acid in horizontal annulus[J]. CIESC Journal, 2014, 65(S2): 71-77.
|
16 |
REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storagesystem using PCM capsules: A review[J]. Renewable & Sustainable Energy Reviews, 2008, 12(9): 2438-2458.
|
17 |
WANG Yifei, WANG Liang, XIE Ninging, et al. Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit[J]. International Journal of Heat & Mass Transfer, 2016, 99: 770-781.
|
18 |
CHANG J, DENNIS Y C L, WU C Z. A review on the energy production, consumption, and prospect of renewable energy in China[J]. Renewable &Sustainable Energy Reviews, 2003, 7(5): 453-468.
|
19 |
彭冬华, 陈振乾, 施明恒. 泡沫金属内相变材料融化传热过程的数值模拟[J]. 工程热物理学报, 2009, 30(6): 1025-1028.
|
|
PENG Donghua, CHEN Zhenqian, SHI Mingheng. Numerical simulation of phase change material thawing process in metallicfoams[J]. Journal of Engineering Thermophysics, 2009, 30(6): 1025-1028.
|
20 |
毛前军.管壳式太阳能相变蓄热装置的数值模拟[C]//中国工程热物理学会传热传质分会, 2017.
|
|
MAO Qianjun. Numerical simulation of shell and tube solar energy phase change thermal storage device [C]//Chinese Society of Engineering Thermophysics, Heat and Mass Transfer, 2017.
|
21 |
郭英利. 石蜡圆管外相变蓄热与释热规律的研究[D]. 天津: 天津大学, 2008.
|
|
GUO Yingli. Study on the heat storage and heat releaseby paraffin phase change outside the pipe[D]. Tianjin: TianjinUniversity, 2008.
|
22 |
周慧琳, 邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报(工学版), 2019, 49(4): 1-9.
|
|
ZHOU Huilin, QIU Yan. Phase change characteristics of paraffin in rectangular storage unit[J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 1-9.
|
23 |
龙伟月, 曹晓玲, 袁艳平, 等. 内径尺寸对环形相变蓄热单元熔化特性影响规律的数值分析[J]. 太阳能学报, 2018, 39(6): 1502-1510.
|
|
LONG Weiyue, CAO Xiaoling, YUAN Yanping, et al. Numerical analysis of effect of inner diameter on melting characteristics of annular phase change heat storage unit[J]. Acta Energiae Solaris Sinica, 2018, 39(6): 1502-1510.
|