1 |
CHAE S , KO M, KIM K , AHN K, CHO J . Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule, 2017, 1 (1): 47-60.
|
2 |
SUN Y , WANG L , LI Y , et al . Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density[J]. Joule, 2019, 3 (4): 1080-1093.
|
3 |
WU X , SONG K , ZHANG X , HU N , et al . Safety issues in lithium ion batteries: Materials and cell design[J]. Frontiers in Energy Research, 2019, 7, doi: 10.3389/fenrg.2019.00065.
|
4 |
YUAN M , LIU K . Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70.
|
5 |
YANG Y , HUANG X , CAO Z , et al . Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries[J]. Nano Energy, 2016, 22: 301-309.
|
6 |
LIU K , KONG B , LIU W , et al . Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability[J]. Joule, 2018, 2 (9): 1857-1865.
|
7 |
GUO G , LONG B , CHENG B , et al . Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195 (8): 2393-2398.
|
8 |
LIU K , LIU Y , LIN D , et al . Materials for lithium-ion battery safety[J]. Science Advance, 2018, 4 (6): eaas9820.
|
9 |
WANG Q , PING P , ZHAO X , et al . Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
10 |
YANG X G , LIU T , GAO Y , et al . Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12): 3002-3019.
|
11 |
LU D , TAO J , YAN P , et al . Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes[J]. Nano Lett., 2017, 17 (3): 1602-1609.
|
12 |
LAGADEC M F , ZAHN R , WOOD V . Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2018, 4 (1): 16-25.
|
13 |
WOODS G L , WHITE K L , VANDERWALL D K , et al . A mule cloned from fetal cells by nuclear transfer[J]. Science, 2003, 301 (5636): 1063.
|
14 |
KIRCHHOFER M , JVON ZAMORY , PAILLARD E , et al . Separators for Li-ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI- and FSI- anions[J]. IntJ. Mol. Sci., 2014, 15 (8): 14868-14890.
|
15 |
WEN Z , PENG Y , CONG J , et al . A stable artificial protective layer for high capacity dendrite-free lithium metal anode[J]. Nano Research, 2019, 12 (10): 2535-2542.
|
16 |
WANG X , YASUKAWA E , KASUYA S . Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148 (10): A1058.
|
17 |
HYUNG Y E , VISSERS D R , AMINE K . Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121: 383-387.
|
18 |
PIRES J , CASTETS A , TIMPERMAN L , et al . Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2015, 296: 413-425.
|
19 |
XIA L , XIA Y , LIU Z . A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278: 190-196.
|
20 |
LIU K , LIU W , QIU Y , et al . Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advance, 2017, 3 (1):1601978.
|
21 |
GRANZOW A . Flame retardation by phosphorus compounds[J]. Accounts of Chemical Research, 2002, 11 (5): 177-183.
|
22 |
ZHU X , JIANG X , AI X , et al . Bis(2,2,2-Trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165: 67-71.
|
23 |
HAREGEWOIN A M , WOTANGO A S , HWANG B J . Electrolyte additives for lithium ion battery electrodes: Progress and perspectives [J]. Energy Environment Science, 2016, 9 (6): 1955-1988.
|
24 |
OTA H, KOMINATO A , CHUN W J , et al . Effect of cyclic phosphate additive in non-flammable electrolyte[J]. Journal of Power Sources, 2003, 119/120/121: 393-398.
|
25 |
ROLLINS H W , HARRUP M K , DUFEK E J , et al . Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes[J]. Journal of Power Sources, 2014, 263: 66-74.
|
26 |
YUAN Y , WU F , CHEN G , et al . Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2019, 37: 197-203.
|
27 |
HAYASHI K , NEMOTO Y , AKUTO K , et al . Ionic liquids for lithium secondary batteries[J]. NTT Tech. Rev., 2004, 2(9): 48-54.
|
28 |
ZHANG S , LI J , JIANG N , et al . Rational design of an ionic liquid-based electrolyte with high ionic conductivity towards safe lithium/lithium-ion batteries[J]. Chem. Asian J., 2019, 14 (16): 2810-2814.
|
29 |
WANG J , YAMADA Y , SODEYAMA K , et al . Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nature Communication, 2016, 7: 12032.
|
30 |
SHIGA T , KATO Y , KONDO H , et al . Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5 (10): 5156-5162.
|
31 |
ZENG G , AN Y , XIONG S , FENG J . Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries[J]. ACS Applied Material Interfaces, 2019, 11 (26): 23229-23235.
|
32 |
TAKADA K , YAMADA Y , YAMADA A . Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Matererial Interfaces, 2019, 11 (39): 35770-35776.
|
33 |
WONG D H , THELEN J L , FU Y , et al . Nonflammable perfluoropolyether-based electrolytes for lithium batteries [J]. Proc. Natl. Acad. Sci. USA, 2014, 111 (9): 3327-3331.
|
34 |
REBER D , FIGI R , KÜHNEL R S , et al . Stability of aqueous electrolytes based on LiFSI and NaFSI[J]. Electrochimica Acta, 2019, 321.
|
35 |
SUO L , BORODIN O , GAO T , et al . "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350 (6263): 938-43.
|
36 |
YANG C , CHEN J , QING T , et al . 4.0 V aqueous Li-ion batteries[J]. Joule, 2017, 1 (1): 122-132.
|
37 |
WANG F , BORODIN O , DING M S , et al . Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries[J]. Joule, 2018, 2 (5): 927-937.
|
38 |
MANTHIRAM A , YU X , WANG S . Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2 (4): 16103.
|
39 |
BACHMAN J C , MUY S, GRIMAUD A , et al . Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Review, 2016, 116 (1): 140-62.
|
40 |
WAN J , XIE J , MACKANIC D G , et al . Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16.
|