1 |
方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5 (2): 149-158.
|
|
FANG Zheng, CAO Yuliang, HU Yongsheng, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
|
2 |
中国产业信息网. 2018年中国锂资源供需情况分析及未来锂矿开发趋势分析[EB/OL]. [2018-04-05]. .
|
3 |
中国地质调查局. 2018年锂资源供需及未来趋势[J]. 中国地质, 2019, 46(6): 1580-1582.
|
4 |
LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(6): 1500031.
|
5 |
方永进, 陈重学, 艾新平, 等. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
|
6 |
KUBOTA K, ASARI T, YOSHIDA H, et al. Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries[J]. Advanced Functional Materials, 2016, 26(33): 6047-6059.
|
7 |
YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591.
|
8 |
MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933.
|
9 |
FANG Y, XIAO L, CHEN Z, et al. Recent advances in sodium-ion battery materials[J]. Electrochemical Energy Reviews, 2018, 1(3): 294-323.
|
10 |
FANG Y, LIU Q, XIAO L, et al. High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(32): 17977-17984.
|
11 |
YUAN T, WANG Y, ZHANG J, et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries[J]. Nano Energy, 2019, 56: 160-168.
|
12 |
PU X, WANG H, YUAN T, et al. Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries[J]. Energy Storage Materials, 2019, 22: 330-336.
|
13 |
WANG L, SONG J, QIAO R, al et, Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554.
|
14 |
LU Y, WANG L, CHENG J, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546.
|
15 |
SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-2664.
|
16 |
WU X, LUO Y, SUN M, et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy, 2015, 13: 117-123.
|
17 |
WU X, SHAO M, WU C, et al. Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23706-23712.
|
18 |
WU X, DENG W, QIAN J, et al. Single-crystal FeFe(CN)6 nanoparticles: A high capacity and high rate cathode for Na-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(35): 10130-10134.
|
19 |
侴术雷. 高比能钠离子电池用低成本电极材料的研究与实践-辽宁星空钠电池安全测试[C]//第二十次全国电化学大会, L-R-036.
|
|
长沙, 2019-10-26.
|