| 1 | 
																						 
											 PANG W L, ZHANG X H, GUO J Z, et al. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics[J]. Journal of Power Sources, 2017, 356: 80-88.
											 											 | 
										
																													
																						| 2 | 
																						 
											 RAMASAMY H V, KALIYAPPAN K, THANGAVEL R, et al. Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping[J]. Journal of Physical Chemistry Letters, 2017, 8(20): 5021-5030.
											 											 | 
										
																													
																						| 3 | 
																						 
											 Springer Nature SharedIt.Recycle spent batteries[J]. Nature Energy, 2019, 4(4): 253-253.
											 											 | 
										
																													
																						| 4 | 
																						 
											 HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 7781 (575): 75-86.
											 											 | 
										
																													
																						| 5 | 
																						 
											 LI H, WANG Z, CHEN L, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.
											 											 | 
										
																													
																						| 6 | 
																						 
											 YANG X, WANG Y Y, HOU B H, et al. Nano-SnO2 decorated carbon cloth as flexible, self-supporting and additive-free anode for sodium/lithium-ion batteries[J]. Acta Metallurgica Sinica (English Letters), 2020, doi: 10.1007/s40195-020-01001-7.
											 												 
																									doi: 10.1007/s40195-020-01001-7
																																			 											 | 
										
																													
																						| 7 | 
																						 
											 FAN B, CHEN X, ZHOU T, et al. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management and Research, 2016, 34(5): 474-481.
											 											 | 
										
																													
																						| 8 | 
																						 
											 CHEN X, CAO L, KANG D, et al. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium[J]. Waste Management, 2018, 80: 198-210.
											 											 | 
										
																													
																						| 9 | 
																						 
											 LI T, ZHAO C, ZHA W, et al. A clean technique to fabricate the renewable and recyclable metal phosphate anode of the high-capacity lithium-ion battery[J]. Journal of Electroanalytical Chemistry, 2019, 855: doi: 10.1016/j.jelechem.2019.113625.
											 											 | 
										
																													
																						| 10 | 
																						 
											 NATARAJAN S, ARAVINDAN V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials, 2018, 8(33): doi: 10.1002/aenm.201802303.
											 											 | 
										
																													
																						| 11 | 
																						 
											 HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528.
											 											 | 
										
																													
																						| 12 | 
																						 
											 CHEN X, CHEN Y, ZHOU T, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38: 349-356.
											 											 | 
										
																													
																						| 13 | 
																						 
											 MENG Q, ZHANG Y, DONG P. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 180: 64-70.
											 											 | 
										
																													
																						| 14 | 
																						 
											 YAO L, YAO H, XI G, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using d,l-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954.
											 											 | 
										
																													
																						| 15 | 
																						 
											 MICHAUD X, SHI K, ZHITOMIRSKY I. Electrophoretic deposition of LiFePO4 for Li-ion batteries[J]. Materials Letters, 2019, 241: 10-13.
											 											 | 
										
																													
																						| 16 | 
																						 
											 CHEN B, BEN L, YU H, et al. Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+-modified LiMn2O4 cathode material[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 550-559.
											 											 | 
										
																													
																						| 17 | 
																						 
											 KITTA M, AKITA T, KOHYAMA M. Transmission electron microscopy investigation of the LiMn2O4/NaxMnO2 interface as a model study of a Na-ion battery electrode[J]. AIP Advances, 2016, 6(11): doi: 10.1063/1.4968605.
											 											 | 
										
																													
																						| 18 | 
																						 
											 NIE X J, XI X T, YANG Y, et al. Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134626.
											 											 | 
										
																													
																						| 19 | 
																						 
											 POTAPENKO A V, KIRILLOV S A. Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite[J]. Electrochimica Acta, 2017, 258: 9-16.
											 											 | 
										
																													
																						| 20 | 
																						 
											 YANG Y, GUO J Z, GU Z Y, et al. Effective recycling of the whole cathode in spent lithium ion batteries: From the widely used oxides to high-energy/stable phosphates[J]. ACS Sustainable Chemistry & Engineering, 2019, doi: 10.1021/acssuschemeng.9b00526.
											 												 
																									doi: 10.1021/acssuschemeng.9b00526
																																			 											 | 
										
																													
																						| 21 | 
																						 
											 LIANG H J, HOU B H, LI W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science, 2019, 12(12): 3575-3584.
											 											 | 
										
																													
																						| 22 | 
																						 
											 SUN Y, GUO S, ZHOU H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840.
											 											 | 
										
																													
																						| 23 | 
																						 
											 ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074.
											 											 | 
										
																													
																						| 24 | 
																						 
											 LIU Q, HU Z, CHEN M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, doi: 10.1002/smll.201805381.
											 												 
																									doi: 10.1002/smll.201805381
																																			 											 | 
										
																													
																						| 25 | 
																						 
											 GU Z Y, GUO J Z, SUN Z H, et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries[J]. Science Bulletin, 2020, doi: 10.1016/j.scib.2020.01.018.
											 												 
																									doi: 10.1016/j.scib.2020.01.018
																																			 											 | 
										
																													
																						| 26 | 
																						 
											 YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(2): doi: 10.1002/aenm.201701785.
											 											 | 
										
																													
																						| 27 | 
																						 
											 WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912.
											 											 | 
										
																													
																						| 28 | 
																						 
											 郭晋芝, 万放, 吴兴隆, 等. 钠离子电池工作原理及关键电极材料研究进展[J]. 分子科学学报, 2016, 32(150): 265-279.
											 											 | 
										
																													
																						 | 
																						 
											 GUO J Z, WAN F, WU X L, et al. Sodium-ion batteries: Work mechanism and the research progress of key electrode materials[J]. International Journal of Molecular Sciences, 2016, 32(150): 265-279.
											 											 | 
										
																													
																						| 29 | 
																						 
											 GUO J Z, YANG Y, LIU D S, et al. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: Superior energy storage performance and working mechanism[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702504.
											 											 | 
										
																													
																						| 30 | 
																						 
											 ZHANG X H, PANG W L, WAN F, et al. P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: Enhanced properties and mechanisam via graphene connection[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20650-20659.
											 											 | 
										
																													
																						| 31 | 
																						 
											 GUO S, LI Q, LIU P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nature Communications, 2017, 8(1): 135-143.
											 											 | 
										
																													
																						| 32 | 
																						 
											 GONZALO E, ORTIZ-VITORIANO N, DREWETT N E, et al. P2 manganese rich sodium layered oxides: Rational stoichiometries for enhanced performance[J]. Journal of Power Sources, 2018, 401:117-125.
											 											 | 
										
																													
																						| 33 | 
																						 
											 DI LECCE D, CAMPANELLA D, HASSOUN J. Insight on the enhanced reversibility of a multimetal layered oxide for sodium-ion battery[J]. The Journal of Physical Chemistry C, 2018, 122(42): 23925-23933.
											 											 | 
										
																													
																						| 34 | 
																						 
											 DENG J, LUO W B, LU X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J]. Advanced Energy Materials, 2018, 8(5): doi: 10.1002/aenm.201701610.
											 											 | 
										
																													
																						| 35 | 
																						 
											 穆林沁, 戚兴国, 胡勇胜, 等. 新型O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 钠离子电池正极材料研究[J]. 储能科学与技术, 2016, 5(3): 324-328.
											 											 | 
										
																													
																						 | 
																						 
											 MU L Q, QI X G, HU Y S, et al. Electrochemical properties of O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 324-328.
											 											 | 
										
																													
																						| 36 | 
																						 
											 KHAN M A, HAN D, LEE G, et al. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries[J]. Journal of Alloys and Compounds, 2019, 771: 987-993.
											 											 | 
										
																													
																						| 37 | 
																						 
											 HASHEM A M, ABDEL-GHANY A E, ABUZEID H M, et al. EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries[J]. Journal of Alloys and Compounds, 2018, 737: 758-766.
											 											 | 
										
																													
																						| 38 | 
																						 
											 LI J Y, LV H Y, ZHANG X H, et al. P2-type Na0.53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries[J]. Chemical Engineering Journal, 2017, 316: 499-505.
											 											 | 
										
																													
																						| 39 | 
																						 
											 PANG W L, GUO J Z, ZHANG X H, et al. P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics[J]. Journal of Alloys and Compounds, 2019, 790: 1092-1100.
											 											 | 
										
																													
																						| 40 | 
																						 
											 YUE J L, ZHOU Y N, YU X Q, et al. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 23261-23267.
											 											 | 
										
																													
																						| 41 | 
																						 
											 YABUUCHI N, YANO M, KUZE S, et al. Electrochemical behavior and structural change of spinel-type Li[LixMn2-x]O4 (x=0 and 0.2) in sodium cells[J]. Electrochimica Acta, 2012, 82: 296-301.
											 											 |