储能科学与技术 ›› 2020, Vol. 9 ›› Issue (4): 1127-1136.doi: 10.19799/j.cnki.2095-4239.2020.0147
杨续来1(), 张峥2, 曹勇2, 刘成士2, 艾新平3()
收稿日期:
2020-04-19
修回日期:
2020-05-17
出版日期:
2020-07-05
发布日期:
2020-06-30
通讯作者:
艾新平
E-mail:xlyang111@163.com;xpai@whu.edu.cn
作者简介:
杨续来(1983—),男,教授,主要研究方向为锂电池科学与技术,E-mail:基金资助:
YANG"Xulai1(), ZHANG"Zheng2, CAO"Yong2, LIU"Chengshi2, AI"Xinping3()
Received:
2020-04-19
Revised:
2020-05-17
Online:
2020-07-05
Published:
2020-06-30
Contact:
Xinping AI
E-mail:xlyang111@163.com;xpai@whu.edu.cn
摘要:
基于商业化应用的锂离子电池材料体系,对电池结构进行工程化设计优化,是目前提升锂离子电池能量密度的重要研究方向。本文对比了电池尺寸、集流体厚度、N/P比和电极厚度等工程化因素在提升电池能量密度方面的潜力及风险,表明增加电极厚度是提高电池能量密度的主要工程化技术途径,但随之会带来电池倍率和寿命等性能下降的问题;基于此,从多孔电极理论出发,重点分析了影响厚电极电池性能的电极结构因素,综述了实用化厚电极的可能实现途径。综合分析表明,通过激光刻蚀、多层涂布等工程化技术,构建具有低曲折度、梯度孔隙率分布结构的实用化厚电极,有望实现厚电极在提高锂离子电池能量密度的同时兼顾电池倍率和寿命等性能。
中图分类号:
杨续来, 张峥, 曹勇, 刘成士, 艾新平. 高能量密度锂离子电池结构工程化技术探讨[J]. 储能科学与技术, 2020, 9(4): 1127-1136.
YANG Xulai, ZHANG Zheng, CAO Yong, LIU Chengshi, AI Xinping. The structural engineering for achieving high energy density Li-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136.
表2
方形铝壳2714891磷酸铁锂/石墨电池典型设计参数"
固定参数 | 设计值 | 可变参数 | 设计值 |
---|---|---|---|
磷酸铁锂可发挥容量/mA·h·g-1 | 143 | 正极压实密度/mg·mm-3 | 2.15 |
石墨负极可发挥容量/mA·h·g-1 | 350 | 负极压实密度/mg·mm-3 | 1.45 |
隔膜密度/mg·mm-3 | 0.91 | 正极活性物质占比/% | 91.0 |
铝箔密度/mg·mm-3 | 2.7 | 负极活性物质占比/% | 94.0 |
铜箔密度/mg·mm-3 | 8.9 | 铝箔厚度/mm | 0.015 |
电解液密度/mg·mm-3 | 1.3 | 铜箔厚度/mm | 0.009 |
单片正极尺寸/mm | 141×78 | 隔膜厚度/mm | 0.020 |
单片负极尺寸/mm | 143×80 | 面积N/P比 | 1.2 |
单片隔膜尺寸/mm | 145×82 | 正极面密度/mg·mm-2 | 0.14 |
电解液注液量/g·(A·h)-1 | 4.8 | ||
电池尺寸/mm | 26.5×148×91 |
表4
电池设计工艺参数的优化对电池能量密度的影响"
工艺参数 | 设计值 | 调整值 | 质量能量密度增加百分比 | 体积能量密度增加百分比 |
---|---|---|---|---|
正极压实密度/mg·mm-3 | 2.15 | 2.4 | 0.6% | 5.1% |
负极压实密度/mg·mm-3 | 1.45 | 1.7 | 0.6% | 5.1% |
电解液注液量/g·(A·h)-1 | 4.8 | 4.0 | 3.4% | 0.0% |
正极活性物质占比/% | 91.0 | 96.0 | 3.2% | 4.1% |
负极活性物质占比/% | 94.0 | 97.0 | 0.6% | 1.2% |
正极面密度/mg·mm-2 | 0.14 | 0.21 | 3.2% | 4.1% |
面积N/P比 | 1.2 | 1.1 | 1.7% | 2.4% |
铝箔厚度/mm | 0.015 | 0.012 | 1.1% | 1.3% |
铜箔厚度/mm | 0.009 | 0.006 | 3.7% | 1.3% |
隔膜厚度/mm | 0.020 | 0.017 | 1.0% | 2.5% |
电池尺寸/mm | 26.5×148×91 | 79×148×91 | 4.9% | 3.2% |
各参数同时调整后 | 31.8% | 38.5% |
1 | 黄云辉 . 锂离子电池: 20世纪最重要的发明之一[J]. 科学通报, 2019, 64: 3811-3816. |
HUANG Yunhui . Lithium-ion battery: One of the most important inventions in the 20th century [J]. Chin. Sci. Bull., 2019, 64: 3811-3816. | |
2 | 杨续来, 陈厚梅, 高二平 . 高比能量动力锂离子电池的研发与集成应用项目介绍[J]. 储能科学与技术, 2017, 6(5): 1145-1147. |
YANG Xulai , CHEN Houmei , GAO Erping . Project “development and application of lithium ion batteries with high specific energy density” [J]. Energy Storage Science and Technology, 2017, 6(5): 1145-1147. | |
3 | KUANG Y , CHEN C , KIRSCH D , et al . Thick electrode batteries: principles, opportunities, and challenges [J]. Adv. Energy Mater., 2019, 9: 1901457 |
4 | 艾新平, 杨汉西 . 浅析动力电池的技术发展[J].中国科学: 化学, 2014, 44: 1150-1158. |
AI Xinping , YANG Hanxi . A brief analysis on the technology development of the EV batteries [J]. Sci. China-Chem., 2014, 44: 1150-1158. | |
5 | 沈炎宾, 陈立桅 . 高能量密度动力电池材料电化学[J]. 科学通报, 2020, 65(2/3): 117-126. |
SHEN Yanbin , CHEN Liwei . Materials electrochemistry for high energy density power batteries[J]. Chin. Sci. Bull., 2020, 65(2/3): 117-126. | |
6 | LI W , ERICKSON E M , MANTHIRAM A . High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nature Energy, 2020, 5: 26-34. |
7 | GUAN P , ZHOU L , YU Z , et al . Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. J. Energy Chem., 2020, 43: 220-235. |
8 | YANG Xulai , XING Junlong , LIU Xu , et al . Performance improvement and failure mechanism of LiNi0.5Mn1.5O4/Graphite cells with biphenyl additives[J]. Phys. Chem. Chem. Phys., 2014, 16(44): 24373-24381. |
9 | HAN X B , LU L G , ZHENG Y J , et al . A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. |
10 | GÜNTER F J , BURGSTALLER C , KONWITSCHNY F , et al . Influence of the electrolyte quantity on lithium-ion cells[J]. J. Electrochem. Soc., 2019, 166(10): A1709-A1714. |
11 | PARK J K . Principles and applications of lithium secondary batteries[M]. KGaA: Wiley-VCH Verlag GmbH & Co., 2012: 320-326. |
12 | MAO C , RUTHER R E , LI J , et al . Identifying the limiting electrode in lithium ion batteries for extreme fast charging[J]. Electrochem. Commun., 2018, 97: 37-41. |
13 | 朱燕, 鲁志佩, 江文锋, 等 . 动力电池包及电动车: 中国, 201920942022.8[P]. 2019-09-13. |
ZHU Yan , LU Zhipei , JIANG Wenfeng , et al . Battery packs and EVs: CN, 201920942022.8[P]. 2019-09-13. | |
14 | CALISKAN A , KADIU A . Body-on-frame electric vehicle with battery pack integral to frame: US, 20190351750A1[P]. 2019-11-21. |
15 | CHU H , TUAN H . High-performance lithium-ion batteries with 1.5 mm thin copper nanowire foil as a current collector[J]. J. Power Sources, 2017, 346: 40-48. |
16 | ZOLIN L , CHANDESRIS M , PORCHER W , et al . An Innovative process for ultra-thick electrodes elaboration: toward low-cost and high-energy batteries[J]. Energy Technol., 2019, 7: 1900025. |
17 | SHELLIKERI A , WATSON V , ADAMS D , et al . Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures[J]. J. Electrochem. Soc., 2017, 164(14): A3914-A3924. |
18 | KIM C S , JEONG K M , KIM K , YI C W . Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries[J]. Electrochim Acta, 2015, 155: 431-436. |
19 | BAASNER A , REUTER F , SEIDEL M , et al . The role of balancing nanostructured silicon anodes and NMC cathodes in lithium-ion full-cells with high volumetric energy density[J]. J. Electrochem. Soc., 2020, 167: 020516. |
20 | 谢佳, 彭文, 杨续来 . 尖晶石镍锰酸锂全电池常温循环寿命分析[J]. 储能科学与技术, 2014, 3(6): 624-628. |
XIE Jia , PENG Wen , YANG Xulai . The cycle life investigation for spinel LiNi0.5Mn1.5O4 full cell[J]. Energy Storage Science and Technology, 2014, 3(6): 624-628. | |
21 | LEE S G, JEON D H . Effect of electrode compression on the wettability of lithium-ion batteries[J]. J. Power Sources, 2014, 265: 363-369. |
22 | 虢放, 薛明喆, 张存满 . 电极厚度对锂离子电池电化学性能的影响[J]. 电源技术, 2017, 41(8): 1114-1123. |
GUO Fang , XUE Mingzhe , ZHANG Cunman . Effects of electrode thickness on electrochemical characteristics of lithium-ion batteries[J]. Chinese J. of Power Sources, 2017, 41(8): 1114-1123. | |
23 | SINGH M , KAISER J , HAHN H . A systematic study of thick electrodes for high energy lithium ion batteries[J]. J. Electroanal. Chem., 2016, 782: 245-249. |
24 | DU Zhijia , WOOD III D L , DANIEL C , et al . Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. J. Appl. Electrochem., 2017, 47: 405-415. |
25 | Singh K B , Tirumkudulu M S . Cracking in drying colloidal films[J]. Phys. Rev. Lett., 2007, 98: 218302. |
26 | PARK S H , KING P J , TIAN R , et al . High areal capacity battery electrodes enabled by segregated nanotube networks[J]. Nature Energy, 2019, 4: 560-567. |
27 | KUMBERG J , MÜLLER M , DIEHM R , et al . Drying of lithium-ion battery anodes for use in high-energy cells: Influence of electrode thickness on drying time, adhesion, and crack formation[J]. Energy Technol., 2019, 7: 1900126. |
28 | 查全性 . 电极过程动力学导论[M]. 北京:科学出版社, 2002: 345-358. |
ZHA Quanxin . Introduction to electrode process dynamics[M]. Beijing: Science Press, 2002: 345-358. | |
29 | 苏宪彬 . LiFePO4锂离子电池放电行为理论研究[J]. 储能科学与技术, 2016, 5(4): 562-567. |
SU Xianbin . Theoretical study on discharge behavior of LiFePO4 battery[J]. Energy Storage Science and Technology, 2016, 5(4): 562-567. | |
30 | SHIM J , STRIEBEL K A . Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries[J]. J. Power Sources, 2003, 119/120/121: 934-937. |
31 | CHENG Huiming , LI Feng . Charge delivery goes the distance[J]. Science, 2017, 356 (6338): 582-583. |
32 | KUANG Yudi , CHEN Chaoji , PASTEL G , et al . Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices[J]. Adv. Energy Mater., 2018, 8: 1802398 |
33 | SUN Hongtao , MEI Lin , LIANG Junfei , et al . Three-dimensional holey-graphene/niobia composite architectures for ultrahigh rate energy storage[J]. Science, 2017, 356: 599-604. |
34 | ABE H, KUBOTA M , NEMOTO M , et al . High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries[J]. J. Power Sources, 2016, 334: 78-85. |
35 | SOTOMAYOR M E , TORRE-GAMARRA C De La, LEVENFELD B , et al . Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries[J]. J. Power Sources, 2019, 437: 226923. |
36 | ELANGO R , DEMORTIÈRE A , ANDRADE V DE , et al . Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Adv. Energy Mater., 2018, 8: 1703031. |
37 | KIRSCH D J , LACEY S D , KUANG Y , et al . Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Appl. Energy Mater., 2019, 2: 2990-2997. |
38 | WU Xinsheng , XIA Shuixin , HUANG Yuanqi , et al . High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries[J]. Adv. Funct. Mater., 2019, 29: 1903961. |
39 | CHIANG Y M , DUDUTA M , HOLMAN R , et al . Semi-solid electrodes having high rate capability: US 9184464B2[P]. 2015-11-10. |
40 | LU Leilei , LU Yuyang , XIAO Zijian , et al . Wood inspired ultra-thick LiCoO2 cathode for high specific energy/power Li-ion batteries[J]. Adv. Mater., 2018, 30: 1706745. |
41 | SANDER J S , ERB R M, LI L , et al . High-performance battery electrodes via magnetic templating[J]. Nature Energy, 2016, 1: 16099. |
42 | ZHAO Z , SUN M , CHEN W , et al . Sandwich, vertical-channeled thick electrodes with high rate and cycle performance[J]. Adv. Fun. Mater., 2019, 29(16): 1809196. |
43 | HUANG C , DONTIGNY M , ZAGHIB K , et al . Low-tortuosity and graded lithium ion battery cathodes by ice templating[J]. J. Mater. Chem. A, 2019, 7: 21421-21431. |
44 | SUN C , LIU S , SHI X , et al . 3D Printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery[J]. Chem. Eng. J., 2020, 381: 122641. |
45 | PARK J , HYEON S , JEONG S , et al . Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity[J]. J. Ind. Eng. Chem., 2019, 70: 178-185. |
46 | KRAFT L , HABEDANK J B , FRANK A , et al . Modeling and simulation of pore morphology modifications using laser-structured graphite anodes in lithium-ion batteries[J]. J. Electrochem. Soc., 2020, 167: 013506. |
47 | RAMADESIGAN V , METHEKAR R N , LATINWO F , et al . Optimal porosity distribution for minimized ohmic drop across a porous electrode[J]. J. Electrochem. Soc., 2010, 157(12): A1328-A1334. |
48 | QI Y , JANG T , RAMADESIGAN V , et al . Is there a benefit in employing graded electrodes for lithium-ion batteries?[J]. J. Electrochem. Soc., 2017, 164 (13): A3196-A3207. |
49 | WANG C P , LOPATIN S D , BACHRACH R Z , et al . Graded electrode technologies for high energy lithium-ion batterie: US, 20110168550 [P]. 2011-07-14. |
50 | 赵丰刚, 陈治, 汪颖, 等 . 具有良好电化学性能的厚电极及其制备方法: 中国, 1023324493B[P]. 2016-03-30. |
ZHAO Fenggang , CHEN Zhi , WANG Ying , et al . The thick electrode with a good electrochemical performance and its preparing method: CN, 1023324493B[P]. 2016-03-30. | |
51 | VLADIMIR K , ELENA K . Improvements relating to electrode structures in batteries: WO, 2006010894[P]. 2006-02-02. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||