储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 7-26.doi: 10.19799/j.cnki.2095-4239.2020.0212
收稿日期:
2020-06-14
修回日期:
2020-07-19
出版日期:
2021-01-05
发布日期:
2021-01-08
通讯作者:
邱景义
E-mail:muyuedeed@hotmail.com;qiujingyi1202@163.com
作者简介:
牟粤(1997—),男,硕士研究生,研究方向为先进化学电源,E-mail:基金资助:
Yue MU1(), Yun DU2, Hai MING1, Songtong ZHANG1, Jingyi QIU1()
Received:
2020-06-14
Revised:
2020-07-19
Online:
2021-01-05
Published:
2021-01-08
Contact:
Jingyi QIU
E-mail:muyuedeed@hotmail.com;qiujingyi1202@163.com
摘要:
储能需求的不断增加,要求储能设备拥有更大的容量,而锂离子电池则在储能领域被寄予厚望。正极材料的结构稳定性及储锂电压直接决定了电池的比能量和比功率,其研究一直是锂离子电池研究的核心问题,近些年引起了人们的广泛关注,尤其是材料的结构和电化学行为的实时-原位表征研究对开发和设计性能更为优异的材料有极大的促进作用。对正极材料而言,我们希望获得微观结构形态、化学组分、离子价态变化、外观形貌、离子输运和电子迁移等特性信息以便于进行更为有效的材料制备、结构设计和改性预处理。本综述对表征方法的原理、表征技术使用的场景和相对应的信息等都做了一定的阐述,同时列举了近年来相关技术在锂离子电池正极材料研究中的一些应用。最后则对比讨论了当前表征技术的优缺点,说明了其在研究工作中面临的主要挑战。因此,本文总结了当前对正极材料的结构以及表-界面行为表征常用的技术,包括显微成像、结构与物相、组分与化学价态、成键与官能团的表征,为促进不同的表征技术联用和材料系统分析提供参考借鉴。
中图分类号:
牟粤, 杜韫, 明海, 张松通, 邱景义. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26.
Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 7-26.
1 | YAN Pengfei, ZHENG Jianming, GU Meng, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nature Communications, 2017, 8(1): doi: 10.1038/ncomms14101. |
2 | PANG W K, LIN H, PETERSON V K, et al. Effects of fluorine and chromium doping on the performance of lithium-rich Li1+xMO2 (M=Ni, Mn, Co) positive electrodes[J]. Chemistry of Materials, 2017, 29(24): 10299-10311. |
3 | ZENG Y, CHIU H, RASOOL M, et al. Hydrothermal crystallization of Pmn21 Li2FeSiO4 hollow mesocrystals for Li-ion cathode application[J]. Chemical Engineering Journal, 2019, 359: 1592-1602. |
4 | LIU Xingrui, WANG Dong, WAN Lijun. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy[J]. Science Bulletin, 2015, 60(9): 839-849. |
5 | CHEN C Y, SANO T, TSUDA T, et al. In situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep36153. |
6 | WANG X F, LI Y J, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234. |
7 | UNOCIC R R, SACCI R L, BROWN G M, et al. Quantitative electrochemical measurements using in situ ec-S/TEM devices[J]. Microscopy and Microanalysis, 2014, 20(2): 452-461. |
8 | WANG Z Y, SANTHANAGOPALAN D, ZHANG W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767. |
9 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
10 | ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
11 | BORKIEWICZ O J, SHYAM B, WIADEREK K M, et al. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements[J]. Journal of Applied Crystallography, 2012, 45(6): 1261-1269. |
12 | LYU Yingchun, LIU Yali, CHENG Tao, et al. High-throughput characterization methods for lithium batteries[J]. Journal of Materiomics, 2017, 3(3): 221-229. |
13 | LIU Hao, ALLAN P K, BORKIEWICZ O J, et al. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices[J]. Journal of Applied Crystallography, 2016, 49(5): 1665-1673. |
14 | LIU D X, WANG J H, PAN K, et al. In situ quantification and visualization of lithium transport with neutrons[J]. Angew Chem Int Ed Engl, 2014, 53(36): 9498-9502. |
15 | BOULET-ROBLIN L, SHEPTYAKOV D, BOREL P, et al. Crystal structure evolution viaoperando neutron diffraction during long-term cycling of a customized 5 V full Li-ion cylindrical cell LiNi0.5Mn1.5O4vs. graphite[J]. Journal of Materials Chemistry A, 2017, 5(48): 25574-25582. |
16 | FINEGAN D P, VAMVAKEROS A, TAN Chun, et al. Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14467-x. |
17 | TU Wenqiang, XIA Pan, ZHENG Xiongwen, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341: 348-356. |
18 | KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26): 9239-9249. |
19 | SHPIGEL N, LEVI M D, SIGALOV S, et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes[J]. Nature Materials, 2016, 15(5): 570-575. |
20 | BRANT W R, LI D, GU Q F, et al. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials[J]. Journal of Power Sources, 2016, 302: 126-134. |
21 | GANAPATHY S, ADAMS B D, STENOU G, et al. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction[J]. Journal of the American Chemical Society, 2014, 136(46): 16335-16344. |
22 | BORKIEWICZ O J, WIADEREK K M, CHUPAS P J, et al. Best practices for operando battery experiments: Influences of X-ray experiment design on observed electrochemical reactivity[J]. The Journal of Physical Chemistry Letters, 2015, 6(11): 2081-2085. |
23 | GU M, PARENT L R, MEHDI B L, et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes[J]. Nano Letters, 2013, 13(12): 6106-6112. |
24 | HOLTZ M E, YU Y, GUNCELER D, et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte[J]. Nano Letters, 2014, 14(3): 1453-1459. |
25 | CHEN D C, MAHMOUD M A, WANG J, et al. Operando investigation into dynamic evolution of cathode-electrolyte interfaces in a Li-ion battery[J]. Nano Letters, 2019, 19(3): 2037-2043. |
26 | MA Kaijie, ZHANG Yunong, LIU Le, et al. In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-13147-9. |
27 | LIN Ruoqian, HU Enyuan, LIU Mingjie, et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-09248-0. |
28 | ZHANG Jienan, LI Qinghao, OUYANG Chuying, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603. |
29 | XIE Song, REN Lixiang, YANG Xiaoyong, et al. Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227425. |
30 | DING D, MAEYOSHI Y, KUBOTA M, et al. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227553. |
31 | WANG D, BUQA H, CROUZET M, et al. High-performance, nano-structured LiMnPO4 synthesized via a polyol method[J]. Journal of Power Sources, 2009, 189(1): 624-628. |
32 | ZHENG Jianming, XU Pinghong, GU Meng, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chemistry of Materials, 2015, 27(4): 1381-1390. |
33 | QING Renpeng, SHI Jile, XIAO Dongdong, et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201501914. |
34 | COHEN Y S, AURBACH D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: In situ AFM imaging[J]. Electrochemistry Communications, 2004, 6(6): 536-542. |
35 | ALVARADO J, SCHROEDER M A, ZHANG Minghao, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353. |
36 | LI Xinlu, KANG Feiyu, BAI Xinde, et al. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(4): 663-666. |
37 | DOHERTY C M, CARUSO R A, SMARSLY B M, et al. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries[J]. Chemistry of Materials, 2009, 21(21): 5300-5306. |
38 | HUA Weibo, WU Zhenguo, CHEN Mingzhe, et al. Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors[J]. Journal of Materials Chemistry A, 2017, 5(48): 25391-25400. |
39 | ZHENG Hao, XIAO Dongdong, LI Xing, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14(8): 4245-4249. |
40 | PENNYCOOK S J, BOATNER L A. Chemically sensitive structure-imaging with a scanning transmission electron microscope[J]. Nature, 1988, 336(6199): 565-567. |
41 | OKUNISHI E, ISHIKAWA I, SAWADA H, et al. Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy[J]. Microscopy and Microanalysis, 2009, 15(S2): 164-165. |
42 | HU Enyuan, YU Xiqian, LIN Ruoqian, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8): 690-698. |
43 | XU Ming, FEI Linfeng, ZHANG Weibing, et al. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries[J]. Nano Letters, 2017, 17(3): 1670-1677. |
44 | INABA M, TOMIYASU H, TASAKA A, et al. Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures[J]. Langmuir, 2004, 20(4): 1348-1355. |
45 | JAISER S, KUMBERG J, KLAVER J, et al. Microstructure formation of lithium-ion battery electrodes during drying—An ex-situ study using cryogenic broad ion beam slope-cutting and scanning electron microscopy (Cryo-BIB-SEM)[J]. Journal of Power Sources, 2017, 345: 97-107. |
46 | WANG Xuefeng, ZHANG Minghao, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612. |
47 | LI Y Z, HUANG W, LI Y B, et al. Correlating Structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. |
48 | SCHIPPER F, DIXIT M, KOVACHEVA D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: Zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41): 16073-16084. |
49 | RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li [NixCoyMn1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30(3): 1155-1163. |
50 | GOONETILLEKE D, SHARMA N, PANG W K, et al. Structural evolution and high-voltage structural stability of Li(NixMnyCoz)O2 electrodes[J]. Chemistry of Materials, 2018, 31(2): 376-386. |
51 | MOHANTY D, DAHLBERG K, KING D M, et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: Preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific Reports, 2016, 6(1): doi: 10.1038/srep26532. |
52 | KLEINER K, STREHLE B, BAKER A R, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: A long-duration in situ synchrotron powder diffraction study[J]. Chemistry of Materials, 2018, 30(11): 3656-3667. |
53 | SHI Jilei, ZHANG Jienan, HE Min, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20138-20146. |
54 | KONDRAKOV A O, SCHMIDT A, XU Jin, et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-3294. |
55 | BOBRIKOV I A, SAMOYLOVA N Y, SUMNIKOV S V, et al. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode[J]. Journal of Power Sources, 2017, 372: 74-81. |
56 | TAN C, DAEMI S R, TAIWO O O, et al. Evolution of electrochemical cell designs for in-situ and operando 3D characterization[J]. Materials (Basel), 2018, 11(11): doi: 10.3390/ma11112157. |
57 | DEDRYVÈRE R, FOIX D, FRANGER S, et al. Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery[J]. Journal of Physical Chemistry C, 2010, 114(24): 10999-11008. |
58 | CHEN Shi, HE Tao, SU Yuefeng, et al. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29732-29743. |
59 | LIN F, XIN H L, NORDLUND D, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nature Energy, 2016, 1(1): doi: 10.1038/nenergy.2015.4. |
60 | ULU OKUDUR F, D'HAEN J, VRANKEN T, et al. Ti surface doping of LiNi0.5Mn1.5O4-δ positive electrodes for lithium ion batteries[J]. RSC Advances, 2018, 8(13): 7287-7300. |
61 | WANDT J, FREIBERG A, THOMAS R, et al. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy[J]. Journal of Materials Chemistry A, 2016, 4(47): 18300-18305. |
62 | LEE J, KITCHAEV D A, KWON D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700): 185-190. |
63 | KIM J, KANG H GO N, et al. Egg-shell structured LiCoO2 by Cu2+ substitution to Li+ sites via facile stirring in an aqueous copper(ii) nitrate solution[J]. Journal of Materials Chemistry A, 2017, 5(47): 24892-24900. |
64 | DHAYBI S, MARSAN B, HAMMAMI A. A novel low-cost and simple colloidal route for preparing high-performance carbon-coated LiFePO4 for lithium batteries[J]. Journal of Energy Storage, 2018, 18: 259-265. |
65 | SHAJU K M, SUBBA R G, CHOWDARI B V. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002, 48(2): 145-151. |
66 | DAHÉRON L, DEDRYVÈRE R, MARTINEZ H, et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590. |
67 | LIU Yunjia, FAN Xiaojian, ZHANG Zhiqian, et al. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2225-2235. |
68 | WANG Gang, WEN Weicheng, CHEN Shuhua, et al. Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4 by Fe2O3 surface coating for lithium-ion batteries[J]. Electrochimica Acta, 2016, 212: 791-799. |
69 | NAYAK P K, GRINBLAT J, LEVI M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502398. |
70 | DOGAN F, VAUGHEY J T, IDDIR H, et al. Direct observation of lattice aluminum environments in Li ion cathodes LiNi1-y-zCoyAlzO2 and Al-doped LiNixMnyCozO2via27Al MAS NMR spectroscopy[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16708-16717. |
71 | YIM T, JANG S H, HAN Y K. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material[J]. Journal of Power Sources, 2017, 372: 24-30. |
72 | CHANDRASHEKAR S, TREASE N M, CHANG H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4): 311-315. |
73 | PECHER O, BAYLEY P M, LIU Hao, et al. Automatic tuning matching cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries[J]. Journal of Magnetic Resonance, 2016, 265: 200-209. |
74 | TSAI P C, WEN B H, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 860-871. |
75 | MU Linqin, LIN Ruoqian, XU Rong, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Letters, 2018, 18(5): 3241-3249. |
76 | YANG Z Z, INGRAM B J, TRAHEY L. Interfacial studies of Li-ion battery cathodes using in situ electrochemical quartz microbalance with dissipation[J]. Journal of the Electrochemical Society, 2014, 161(6): A1127-A1131. |
77 | ZHENG J M, ZHANG Z R, WU X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J]. Journal of the Electrochemical Society, 2008, 155(10): doi: 10.1149/1.2966694. |
78 | GENT W E, LIM K, LIANG Y F, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8(1): doi: 10. 15541/jim20200012. |
79 | LU C Y, ROONEY D W, JIANG X, et al. Achieving high specific capacity of lithium-ion battery cathodes by modification with "N–O˙" radicals and oxygen-containing functional groups[J]. Journal of Materials Chemistry A, 2017, 5(47): 24636-24644. |
80 | 陈龙, 张二冬, IQBAL A, 等. 三元前驱体微观形貌结构对LiNi0.85Co0.10Mn0.05O2正极材料性能的影响[J]. 储能科学与技术, 2020, 9(2): 409-414. |
CHEN Long, ZHANG Erdong, IQBAL A, et al. Effect of precursor microstructure on the performance of LiNi0.85Co0.10Mn0.05O2 cathode materials[J]. Energy Storage Science and Technology, 2020, 9(2): 409-414. | |
81 | 袁琦, 邹正光, 万振东, 等. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113. |
YUAN Qi, ZOU Zhengguang, WAN Zhendong, et al. Synthesis and electrochemical properties of Fe-doped V6O13 as cathode material for Li-ion battery[J]. Journal of Materials Engineering, 2018, 46(1): 106-113. | |
82 | 郝小罡, 刘子庚, 龚正良, 等. 锂离子电池正极材料Na3V2(PO4)2F3的原位XRD及固体核磁共振研究[J]. 中国科学: 化学, 2012. 42(1): 38-46. |
HAO Xiaogang, LIU Zigeng, GONG Zhengliang,et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012, 42(1): 38-46. | |
83 | 马天翼, 王芳, 徐大鹏, 等. 动力电池轻度电滥用积累造成的性能和安全性劣化研究[J]. 储能科学与技术, 2020, 9(2): 400-408. |
MA Tianyi, WANG Fang, XU Dapeng. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 400-408. | |
84 | 刘勇, 白海军, 赵奇志, 等. LiNi0.8Co0.15Al0.05O2/石墨锂离子电池高荷电存储老化机理研究[J]. 无机材料学报, 2020, doi: 10. 15541/jim20200012. |
XIE K, ZHENG C, LI Y, et al. Storage ageing mechanism of LiNi0. 8Co0. 15Al0. 05O2/graphite Li-ion batteries at high state of charge [J]. Journal of Inorganic Materials, 2020, doi: 10. 15541/jim20200012. | |
85 | 孔令丽, 张克军, 蔡嘉兴, 等. 高电压锂离子电池间歇式循环失效分析及改善[J]. 储能科学与技术, 2020, 9(3): 964-968. |
KONG Lingli, ZHANG Kejun, CAI Jiaxing, et al. Analysis and improvement of interval cycle life for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 964-968. | |
86 | 苏岳锋, 张其雨, 陈来, 等. ZrO2包覆高镍LiNi0.8Co0.1Mn0.1O2正极材料提高其循环稳定性的作用机理[J]. 物理化学学报, 2020, doi: 10. 3866/PKU. WHXB202005062. |
SU Yuefeng, ZHANG Qiyu, CHEN Lai, et al. Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities[J]. Acta Physico-Chimica Sinica, 2020, doi: 10. 3866/PKU. WHXB202005062. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[12] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[13] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[14] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[15] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||