1 |
CHIANG Y M. Building a better battery[J]. Science, 2010, 330(6010): 1485-1486.
|
2 |
FERGUS J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4): 939-954.
|
3 |
KIM Junhyeok, Hyomyung LEE, Hyungyeon CHA, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201702028.
|
4 |
KIM Yongseon, KIM Doyu. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 586-589.
|
5 |
MA Fei, WU Yinghong, WEI Guangye, et al. Comparative study of simple and concentration gradient shell coatings with Li1.2Ni0.13Mn0.54Co0.13O2 on LiNi0.8Mn0.1Co0.1O2 cathodes for lithium-ion batteries[J]. Solid State Ionics, 2019, 341: doi: 10.1016/j.ssi.2019.115034.
|
6 |
SHIM Jae Hyun, KIM Chang Yeon, Sang Woo CHO, et al. Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery[J]. Electrochimica Acta, 2014, 138: 15-21.
|
7 |
WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests[J]. Journal of Power Sources, 2014, 258: 210-217.
|
8 |
DOKKO K, NISHIZAWA M, HORIKOSHI S, et al. In situ observation of LiNiO2 single-particle fracture during Li-ion extraction and insertion[J]. Electrochemical and Solid-State Letters, 2000, 3(3): 125-127.
|
9 |
AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
|
10 |
LI Hongyang, LI Jing, MA Xiaowei, et al. Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(5): A1038-A1045.
|
11 |
LI Jing, CAMERON A R, LI Hongyang, et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells[J]. Journal of The Electrochemical Society, 2017, 164(7): A1534-A1544.
|
12 |
KIM Yongseon. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2329-2333.
|
13 |
WU Kang, LI Qi, DANG Rongbin, et al. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring[J]. Nano Research, 2019, 12(10): 2460-2467.
|
14 |
LI Xiangqun, XIONG Xunhui, WANG Zhixing, et al. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 4023-4029.
|
15 |
LI Yan, XU Rui, REN Yang, et al. Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction[J]. Nano Energy, 2016, 19: 522-531.
|
16 |
JIANG Xuyin, CHU Shiyong, CHEN Yubo, et al. LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique[J]. Journal of Alloys and Compounds, 2017, 691: 206-214.
|
17 |
SATYANARAYANA M, JAMES J, VARADARAJU U. Electrochemical performance of LiNi0.4Co0.2Mn0.4O2 prepared by different molten salt flux: LiNO3-LiCl and LiNO3-KNO3[J]. Applied Surface Science, 2017, 418: 72-78.
|
18 |
ZHAO Xuan, REDDY M, LIU Hanxing, et al. Layered Li(Ni0.2Mn0.2Co0.6)O2 synthesized by a molten salt method for lithium-ion batteries[J]. RSC Advances, 2014, 4(47): 24538-24543.
|
19 |
LACMANN R, HERDEN A, MAYER C. Kinetics of nucleation and crystal growth[J]. Chemical Engineering & Technology, 1999, 22(4): 279-289.
|
20 |
OHZUKU T, BRODD R J. An overview of positive-electrode materials for advanced lithium-ion batteries[J]. Journal of Power Sources, 2007, 174(2): 449-456.
|
21 |
DING Yin, WANG Rui, WANG Lei, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia, 2017, 105: 2941-2952.
|
22 |
DUAN Jianguo, WU Ceng, CAO Yanbing, et al. Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology[J]. Journal of Alloys and Compounds, 2017, 695: 91-99.
|
23 |
FU Chaochao, LI Guangshe, LUO Dong, et al. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15822-15831.
|
24 |
LI Xing, ZHANG Kangjia, WANG Siyuan, et al. Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi0.68Co0.10Mn0.22O2[J]. Sustainable Energy & Fuels, 2018, 2(8): 1772-1780.
|
25 |
HWANG Bing Joe, SANTHANAM R, CHEN Chinh Hsiang. Effect of synthesis conditions on electrochemical properties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries[J]. Journal of Power Sources, 2003, 114(2): 244-252.
|
26 |
ZHU Xinhua, ZHOU Jun, JIANG Mengchao, et al. Molten salt synthesis of bismuth ferrite nano and microcrystals and their structural characterization[J]. Journal of the American Ceramic Society, 2014, 97(7): 2223-2232.
|
27 |
YANG Chaofan, HUANG Junjie, HUANG Liangai, et al. Electrochemical performance of LiCo1/3Mn1/3Ni1/3O2 hollow spheres as cathode material for lithium ion batteries[J]. Journal of Power Sources, 2013, 226: 219-222.
|
28 |
KWON Soon Gu, HYEON Taeghwan. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods[J]. Small, 2011, 7(19): 2685-2702.
|
29 |
WANG Lei, WU Borong, MU Daobin, et al. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2016, 674: 360-367.
|
30 |
Duc Luong VU, Jae Won LEE. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries[J]. Korean Journal of Chemical Engineering, 2016, 33(2): 514-526.
|
31 |
KANG Jian, TAKAI S, YABUTSUKA T, et al. Structural relaxation of Lix(Ni0.874Co0.090Al0.036)O2 after lithium extraction down to x= 0.12[J]. Materials, 2018, 11(8): doi: 10.1149/2.0211903jes.
|
32 |
HUANG Bin, LI Xinhai, WANG Zhixing, et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223-13230.
|
33 |
LIANG Longwei, JIANG Feng, CAO Yanbing, et al. One strategy to enhance electrochemical properties of Ni-based cathode materials under high cut-off voltage for Li-ion batteries[J]. Journal of Power Sources, 2016, 328: 422-432.
|
34 |
YANG Xinhe, SHEN Lanyao, WU Bin, et al. Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 639: 458-464.
|
35 |
DU Ke, GUO Hongwei, HU Guorong, et al. Na3V(PO4)3 as cathode material for hybrid lithium ion batteries[J]. Journal of Power Sources, 2013, 223: 284-288.
|
36 |
XIAO Biwei, WANG Kuan, XU Guiliang, et al. Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na[J]. Advanced Materials, 2019, 31(29): doi: 10.1002/adma.201805889.
|
37 |
MIAO Xiaowei, NI Huan, ZHANG Han, et al. Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery[J]. Journal of Power Sources, 2014, 264: 147-154.
|
38 |
LV Yeting, CHENG Xu, QIANG Wenjiang, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.5O2 by Mg-doping[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2020.227718.
|