1 |
ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Adv Sci, 2017, 4(8): doi: 10.1002/advs.201700032.
|
2 |
CAO Z Y, HASHINOKUCHI M, DOI T, et al. Improved cycle performance of LiNi0.8Co0.1Mn0.1O2 positive electrode material in highly concentrated LiBF4/DMC[J]. Journal of the Electrochemical Society, 2019, 166(2): A82-A88.
|
3 |
沈旻, 蒋志敏, 李南, 等. 高安全性锂离子电池电解液[J]. 储能科学与技术, 2018, 7(6): 1069-1081.
|
|
SHEN Min, JIANG Zhimin, LI Nan, et al. High safety electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1069-1081.
|
4 |
SONG H Y, JUNG M H, JEONG S K. Improving electrochemical performance at graphite negative electrodes in concentrated electrolyte solutions by addition of 1,2-dichloroethane[J]. Applied Sciences, 2019, 9(21): doi: 10.3390/app9214647.
|
5 |
DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(11): 2563-2575.
|
6 |
FLORES E, ÅVALL G, JESCHKE S, et al. Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries[J]. Electrochimica Acta, 2017, 233: 134-141.
|
7 |
马国强, 蒋志敏, 陈慧闯, 等. 基于锂盐的新型锂电池电解质研究进展[J]. 无机材料学报, 2018(7): 699-710.
|
|
MA Guoqiang, JIANG Zhimin, CHEN Huichuang, et al. Research process on novel electrolyte of lithium-ion battery based on lithium salts[J]. Journal of Inorganic Materials, 2018, 33(7): 699-710.
|
8 |
YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J Am Chem Soc, 2014, 136(13): 5039-5046.
|
9 |
DOI T, MATSUMOTO R, ENDO T, et al. Extension of anodic potential window of ester-based electrolyte solutions for high-voltage lithium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(11): 7728-7732.
|
10 |
DOI T, MASUHARA R, HASHINOKUCHI M, et al. Concentrated LiPF6/PC electrolyte solutions for 5 V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta, 2016, 209: 219-224.
|
11 |
CAO Z Y, HARUTA M, DOI T, et al. Dilution effects of highly concentrated dimethyl carbonate-based electrolytes with a hydrofluoroether on charge/discharge properties of LiNi0.8Co0.1Mn0.1O2 positive electrode[J]. Journal of the Electrochemical Society, 2019, 166(16): A4005-A4013.
|
12 |
ZHENG Y, SOTO F A, PONCE V, et al. Localized high concentration electrolyte behavior near a lithium-metal anode surface[J]. Journal of Materials Chemistry A, 2019, 7(43): 25047-25055.
|
13 |
ZHOU Y M, HU J C, HE P X, et al. Corrosion suppression of aluminum metal by optimizing lithium salt concentration in solid-state imide salt-based polymer plastic crystal electrolyte membrane[J]. ACS Applied Energy Materials, 2018, 1(12): 7022-7027.
|
14 |
WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2017, 3(1): 22-29.
|
15 |
VATAMANU J, BORODIN O. Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability[J]. J Phys Chem Lett, 2017, 8(18): 4362-4367.
|
16 |
ZHANG X L, KURODA D G. An ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: A comparison between linear and cyclic carbonates[J]. J Chem Phys, 2019, 150(18): doi: 10.1063/1.5088820.
|
17 |
LI C L, WANG P, LI S Y, et al. Active mechanism of the interphase film-forming process for an electrolyte based on a sulfolane solvent and a chelato-borate complex[J]. ACS Appl Mater Interfaces, 2018, 10(30): 25744-25753.
|
18 |
BORODIN O, REN X, VATAMANU J, et al. Modeling insight into battery electrolyte electrochemical stability and interfacial structure[J]. ACC Chem Res, 2017, 50(12): 2886-2894.
|
19 |
VATAMANU J, BORODIN O, SMITH G D. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential[J]. Journal of Physical Chemistry C, 2012, 116(1): doi: 10.1021/jp2101539.
|
20 |
BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100.
|
21 |
PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719.
|
22 |
CHU Y L, SHEN Y B, GUO F, et al. Advanced characterizations of solid electrolyte interphases in lithium-ion batteries[J]. Electrochemical Energy Reviews, 2019, 3(1): 187-219.
|
23 |
WANG L, LUO Z, XU H, et al. Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes[J]. RSC Advances, 2019, 9(71): 41837-41846.
|
24 |
CHEN X, ZHANG X Q, LI H R, et al. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries[J]. Batteries & Supercaps, 2019, 2(2): 128-131.
|
25 |
MYNAM M, RAVIKUMAR B, RAI B. Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries[J]. Journal of Molecular Liquids, 2019, 278: 97-104.
|
26 |
WANG J H, YAMADA Y, SODEYAMA K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nat Commun, 2016, 7: doi: 10.1038/ncomms12032.
|
27 |
HOU Z G, DONG M F, XIONG Y L, et al. Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure[J]. Advanced Energy Materials, 2020, 10(15): doi: 10.1002/aenm.201903665.
|
28 |
LIU Q, XU H L, WU F, et al. Effects of a high-concentration LiPF6-based carbonate ester electrolyte for the electrochemical performance of a high-voltage layered LiNi0.6Co0.2Mn0.2O2 cathode[J]. ACS Applied Energy Materials, 2019, 2(12): 8878-8884.
|
29 |
XING L D, ZHENG X W, SCHROEDER M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. ACC Chem Res, 2018, 51(2): 282-289.
|
30 |
YANG C Y, CHEN J, QING T T, et al. 4.0 V aqueous Li-ion batteries[J]. Joule, 2017, 1(1): 122-132.
|
31 |
MCOWEN D W, SEO D M, BORODIN O, et al. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms[J]. Energy Environ Sci, 2014, 7(1): 416-426.
|
32 |
曾双威, 李春雷, 李世友, 等. 基于LiFSI和LiTFSI电解液对铝箔腐蚀的抑制方法[J]. 现代化工, 2019, 39(1): 34-37.
|
|
ZENG Shuangwei, LI Chunlei, LI Shiyou, et al. Methods for suppressing aluminum foil corrosion by LiFSI and LiTFSI based electrolytes[J]. Modern Chemical Industry, 2019, 39(1): 34-37.
|
33 |
MATSUMOTO K, INOUE K, NAKAHARA K, et al. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte[J]. Journal of Power Sources, 2013, 231: 234-238.
|
34 |
WU C J, RATH P C, PATRA J, et al. Composition modulation of ionic liquid hybrid electrolyte for 5 V lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(45): 42049-42056.
|
35 |
LU D P, TAO J H, YAN P F, et al. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes[J]. Nano Lett, 2017, 17(3): 1602-1609.
|
36 |
MING J, CAO Z, WU Y Q, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Letters, 2019, 4(11): 2613-2622.
|
37 |
YAN C, XU R, XIAO Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries[J]. Advanced Functional Materials, 2020, 30(23): doi: 10.1002/adfm.201909887
|
38 |
WANG M Q, HUAI L Y, HU G H, et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9825-9834.
|
39 |
LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nat Nanotechnol, 2019, 14(1): 50-56.
|