1 |
DUNN B, KAMATH H, TARASCON J. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
2 |
LI Wei, LIU Jun, ZHAO Dongyuan. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1: 16023-16039.
|
3 |
LIU Wen, OH Pilgun, LIU Xien, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457.
|
4 |
HE Yu, YU Xiqian, WANG Yanhong, et al. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Materials, 2011, 23(42): 4938-4941.
|
5 |
CHO Taehyung, TANAKA M, OHNISHI H, et al. Composite nonwoven separator for lithium-ion battery: Development and characterization[J]. Journal of Power Sources, 2010, 195(13): 4272-4277.
|
6 |
LIN Yilong, XU Mengqing, WU Suping, et al. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0.6Mn0.2Co0.2O2 cell via incorporation of 4-propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD)[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16400-16409.
|
7 |
WOOD D L, LI J L, DANIEL C. Prospects for reducing the processing cost of lithium ion batteries[J]. Journal of Power Sources, 2015, 275: 234-242.
|
8 |
LI J L, DANIEL C, WOOD D L. Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(5): 2452-2460.
|
9 |
PATHAN T S, RASHID M, WALKER M, et al. Active formation of Li-ion batteries and its effect on cycle life[J]. Journal of Physics: Energy, 2019, 1(4): doi: 10.1088/2515-7655/ab2092.
|
10 |
ANTONOPOULOS B K, STOCK C, MAGLIA F, et al. Solid electrolyte interphase: Can faster formation at lower potentials yield better performance?[J]. Electrochimica Acta, 2018, 269(10): 331-339.
|
11 |
LI J L, DU Z J, RUTHER R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries[J]. JOM, 2017, 69(9): 1484-1496.
|
12 |
DAVOODABADI A, LI J L, ZHOU H, et al. Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101034.
|
13 |
WOOD D L, LI J L, AN S J. Formation challenges of lithium-ion battery manufacturing[J]. Joule, 2019, 3(12): 2884-2888.
|
14 |
AN S J, LI J L, DU Z J, et al. Fast formation cycling for lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 846-852.
|
15 |
LEE Hsianghwan, WANG Yungyun, WAN Chichao, et al. A fast formation process for lithium batteries[J]. Journal of Power Sources, 2004, 134: 118-123.
|
16 |
MAO C Y, AN S J, MEYER H M, et al. Balancing formation time and electrochemical performance of high energy lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 107-115.
|
17 |
BHATTACHARYA S, ALPAS A T. Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells[J]. Carbon, 2012, 50(15): doi: 10.1016/j.carbon.2012.07.009.
|
18 |
WANG Renheng, LI Xinhai, WANG Zhixing. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive[J]. Nano Energy, 2017, 34: 131-140.
|
19 |
XU Kang. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
|
20 |
XU Mengqing, ZHOU Liu, DONG Yingnan, et al. Improving the performance of graphite/LiNi/0.5Mn1.5O4 cells at high voltage and elevated temperature with added Lithium bis(oxalato) borate (LiBOB)[J]. Journal of the Electrochemical Society, 2013, 160(11): A2005-A2013.
|
21 |
GILBERT J A, BARENO J, SPILA T, et al. Cycling behavior of NCM523/graphite lithium-ion cells in the 3~4.4 V range: Diagnostic studies of full cells and harvested electrodes[J]. Journal of the Electrochemical Society, 2016, 164(1): A6054-A6065.
|
22 |
GLAZIER S L, LI J, LOULI A J, et al. An analysis of artificial and natural graphite in lithium ion pouch cells using ultra-high precision coulometry, isothermal microcalorimetry, gas evolution, long term cycling and pressure measurements[J]. Journal of the Electrochemical Society, 2017, 164(14): A3545-A3555.
|
23 |
AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268(5): 153-162.
|
24 |
LOPEZ I R, LAIN M J, KENDRICK E. Optimisation of formation and conditioning protocols for lithium ion EV batteries[J]. Batteries & Supercaps, 2020, 3(9): 900-909.
|
25 |
杜强, 张一鸣, 田爽, 等. 锂离子电池SEI膜形成机理及化成工艺影响[J]. 电源技术, 2018, 42(12): 1922-1926.
|
|
DU Qiang, ZHANG Yiming, TIAN Shuang, et al. Formation mechanism of solid electrolyte interphase (SEI) and effect of formation process on it in lithium ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(12): 1922-1926.
|
26 |
杨娟. 锂离子电池化成条件对化成效果的影响[J]. 河南科技, 2017(19): 139-140.
|
|
YANG Juan. Influence of formation conditions of lithium ion battery on formation efficiency[J]. Henan Science and Technology, 2017(19): 139-140.
|
27 |
DAVOODABADI A, LI J L, LIANG Y F, et al. Analysis of electrolyte imbibition through lithium-ion battery electrodes[J]. Journal of Power Sources, 2019, 424: 193-203.
|
28 |
JEON D H. Wettability in electrodes and its impact on the performance of lithium-ion batteries[J]. Energy Storage Materials, 2019, 18: 139-147.
|
29 |
HE Yanbing, TANG Zhiyuan, SONG Quansheng, et al. Effects of temperature on the formation of graphite/LiCoO2 batteries[J]. Journal of the Electrochemical Society, 2008, 155(7): A481-A487.
|
30 |
GERMAN F, HINTENNACH A, LACROIX A, et al. Influence of temperature and upper cut-off voltage on the formation of lithium-ion cells[J]. Journal of Power Sources, 2014, 264: 100-107.
|
31 |
YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338.
|
32 |
HUANG Chenghuan, HUANG Kelong, WANG Haiyan, et al. The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells[J]. Journal of Solid State Electrochemistry, 2011, 15(9): 1987-1995.
|
33 |
CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 245: 745-751.
|
34 |
PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807.
|
35 |
MAO Z Y, FARKHONDEH M, PRITZKER M, et al. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell[J]. Journal of the Electrochemical Society, 2017, 164(14): A3469-A3483.
|
36 |
RUBINO R S, GAN Hong, TAKEUCHI E S. A study of capacity fade in cylindrical and prismatic lithium-ion batteries[J]. Journal of the Electrochemical Society, 2001 148(9): A1029-A1033.
|
37 |
PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153.
|
38 |
HEIMES H H, OFFERMANNS C, MOHSSENI A, et al. The effects of mechanical and thermal loads during lithium-ion pouch cell formation and their impacts on the process time[J]. Energy Technology, 2020, 8(2): doi: 10.1002/ente.201900118.
|
39 |
STEINHAUER M, RISSE S, WAGNER N, et al. Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2017, 228: 652-658.
|
40 |
WANG A P, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. Computational Materials, 2018, 3(4): 1-26.
|
41 |
OTA H, SATO T, SUZUKI H, et al. TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. Journal of Power Sources, 2001, 97: 107-113.
|
42 |
ZHU Taohe, HU Qiyang, YAN Guochun, et al. Manipulating the composition and structure of solid electrolyte interphase at graphite anode by adjusting the formation condition[J]. Energy Technology, 2019, 7(9): 1900273-1900281.
|