储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1812-1827.doi: 10.19799/j.cnki.2095-4239.2020.0341
季洪祥(), 起文斌, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2020-10-15
修回日期:
2020-10-20
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
黄学杰
E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn
作者简介:
季洪祥(1997—),男,博士研究生,从事锂离子电池正极材料的研究,E-mail:基金资助:
Hongxiang JI(), Wenbin QI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2020-10-15
Revised:
2020-10-20
Online:
2020-11-05
Published:
2020-10-28
Contact:
Xuejie HUANG
E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年8月1日至2020年9月30日上线的锂电池研究论文,共有3062篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元、镍酸锂、高电压钴酸锂和镍锰酸锂的表面改性和体相掺杂,以及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究侧重于电极结构的设计、预锂化、界面稳定机制等,金属锂负极的研究侧重于通过电极结构的设计来调控SEI的生长以及抑制锂枝晶的形成。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。液态电解液方面主要涉及对溶剂、锂盐以及添加剂的选择优化设计,特别是针对高电压镍锰酸锂的电解液研究有多篇论文。针对固态电池,有文章提到通过合金化负极的设计提高锂沉积的均匀性;也有文章研究了硫化物固体电解质基全固态电极的湿法涂覆技术。锂硫电池的研究重点是提高硫正极的活性。测试表征方面偏重于用原位方法对材料结构和电极/电解质界面、热失效机理等进行观测和分析,固态电池的界面问题研究是热点。此外,还有多篇论文用理论计算对材料的电子结构以及界面结构及锂离子的输运机制进行了探讨。
中图分类号:
季洪祥, 起文斌, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.08.01—2020.09.30)[J]. 储能科学与技术, 2020, 9(6): 1812-1827.
Hongxiang JI, Wenbin QI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Aug. 1, 2020 to Sept. 30, 2020)[J]. Energy Storage Science and Technology, 2020, 9(6): 1812-1827.
1 | LI W, LEE S, MANTHIRAM A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries[J]. Advanced Materials, 2020, 32(33):doi:10.1002/adma.202002718. |
2 | LIU Y, WU H, LI K, et al. Cobalt-free core-shell structure with high specific capacity and long cycle life as an alternative to Li Ni0.8Mn0.1Co0.1O2[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abb350. |
3 | RYU H H, PARK N Y, YOON D R, et al. New class of Ni-rich cathode materials LiNixCoyB1-x-yO2 for next lithium batteries[J]. Advanced Energy Materials, 2020, 10(25): doi: 10.1002/aenm.202000495. |
4 |
LIN Z, LUO D, DING X, et al. Accurate control of initial coulombic efficiency for Li-rich Mn-based layered oxides by surface multicomponent integration[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/anie.202010531.
doi: 10.1002/anie.202010531 |
5 | YIN E, GRIMAUD A, ROUSSE G, et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14927-4. |
6 | DU B, MO Y, JIN H, et al. Radially microstructural design of LiNi0.8Co0.1Mn0.1O2 cathode material toward long-term cyclability and high rate capability at high voltage[J]. ACS Applied Energy Materials, 2020, 3(7): 6657-6669. |
7 | CHANG B, KIM J, CHO Y, et al. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(29): doi: 10.1002/aenm.202001069. |
8 | MURALIDHARAN N, ESSEHLI R, HERMANN R P, et al. Lithium iron aluminum nickelate, LiNixFeyAlzO2-new sustainable cathodes for next-generation cobalt-free Li-ion batteries[J]. Advanced Materials, 2020, 32(34): doi: 10.1002/adma.202002960. |
9 | CHEN Q, PEI Y, CHEN H, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17126-3. |
10 | WANG Y, ZHANG Q, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): doi: 10.1002/aenm.202001413. |
11 |
AHN J, CHEN D, CHEN G. A fluorination method for improving cation-disordered rocksalt cathode performance[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202001671.
doi: 10.1002/aenm.202001671 |
12 | MA T, LIU L, WANG J, et al. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries[J]. Angewandte Chemie-International Edition, 2020, 59(28): 11533-11539. |
13 | KIM K H, SHON J, JEONG H, et al. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method[J]. Journal of Power Sources, 2020, 459: doi: 10.1016/j.jpowsour.2020.228066. |
14 | MENG T, LI B, WANG Q, et al. Large-scale electric-field confined silicon with optimized charge-transfer kinetics and structural stability for high-rate lithium-ion batteries[J]. ACS Nano, 2020, 14(6): 7066-7076. |
15 |
SON Y, KIM N, LEE T, et al. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202003286.
doi: 10.1002/adma.202003286 |
16 | LIU L, WANG J, OSWALD S, et al. Decoding of oxygen network distortion in a layered high-rate anode by in situ investigation of a single microelectrode[J]. ACS Nano, 2020, 14(9): 11753-11764. |
17 | LIU H, ZHU Z, YAN Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63. |
18 | UCHIDA S, INAMOTO J, MATSUO Y, et al. Graphene-like graphite negative electrode rapidly chargeable at constant voltage[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba1a7. |
19 | BORZUTZKI K, DONG D, WOLKE C, et al. Small groups, big impact: Eliminating Li+ traps in single-ion conducting polymer electrolytes[J]. iScience, 2020, 23(8): 101417. |
20 | DUCHARDT M, DIELS M, ROLING B, et al. Flow-oriented synthesis of Li2S and Li3PS4 center dot 3THF: Opening up a completely solvent-based solid electrolyte value chain[J]. ACS Applied Energy Materials, 2020, 3(7): 6937-6945. |
21 | PESCI F M, BERTEI A, BRUGGE R H, et al. Establishing ultralow activation energies for lithium transport in garnet electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32806-32816. |
22 | SHENG O, ZHENG J, JU Z, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM[J]. Advanced Materials, 2020, 32(34): doi: 10.1002/adma.202000223. |
23 | HIKIMA K, YAMAMOTO T, NGUYEN HUU HUY P, et al. Improved ionic conductivity of Li2S-P2S5-LiI solid electrolytes synthesized by liquid-phase synthesis[J]. Solid State Ionics, 2020, 354: doi: 10.1016/j.ssi.2020.115403. |
24 | INDRAWAN R F, YAMAMOTO T, PHUC N HUU HUY, et al. Liquid-phase synthesis of 100Li3PS4-50LiIxLi3PO4 solid electrolytes[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115184. |
25 | CHOUDHURY S, STALIN S, VU D, et al. Solid-state polymer electrolytes for high-performance lithium metal batteries[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-12423-y. |
26 | YE L, FITZHUGH W, GIL-GONZALEZ E, et al. Toward higher voltage solid-state batteries by metastability and kinetic stability design[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001569. |
27 | CAI G, HOLOUBEK J, XIA D, et al. An ester electrolyte for lithium-sulfur batteries capable of ultra-low temperature cycling[J]. Chemical Communications, 2020, 56(64): 9114-9117. |
28 | FENG D, CHEN S, WANG R, et al. Mixed lithium salts electrolyte improves the high-temperature performance of nickel-rich based lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba4e7. |
29 |
HAN J, CHUNG G J, SONG S W. Robust solid-electrolyte interphase enables near-theoretical capacity of graphite battery anode at 0.2 C in propylene carbonate-based electrolyte[J]. Chemsuschem, 2020, doi: 10.1002/cssc.202001423.
doi: 10.1002/cssc.202001423 |
30 | HWANG J, MATSUMOTO K, HAGIWARA R. Electrolytes toward high-voltage Na3V2(PO4)2F3 positive electrode durable against temperature variation[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001880. |
31 | LI Y, WANG K, CHEN J, et al. Stabilized high-voltage cathodes via an F-rich and Si-containing electrolyte additive[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28169-28178. |
32 | TAN C, WANG N, PAN Q, et al. Enhancing the electrochemical performance of a high-voltage LiNi0.5Mn1.5O4 cathode in a carbonate-based electrolyte with a novel and low-cost functional additive[J]. Chemistry-A European Journal, 2020, 26(53): 12233-12241. |
33 | YU Z, WANG H, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. |
34 | CHUNG G J, HAN J, SONG S W. Fire-preventing LiPF6 and ethylene carbonate-based organic liquid electrolyte system for safer and outperforming lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42868-42879. |
35 | HIRATA K, KAWASE T, SUMIDA Y. Effects of lithium salts and solvents on the performance of lithium-ion batteries with carbonate-free electrolytes comprising lithium bis(fluorosulfonyl)imide and sulfolane[J]. Chemistry Letters, 2020, 49(10): 1140-1143. |
36 | KO S, YAMADA Y, YAMADA A. A 4.8 V reversible Li2CoPO4F/graphite battery enabled by concentrated electrolytes and optimized cell design[J]. Batteries & Supercaps, 2020, 3(9): 910-916. |
37 | LI G, LIAO Y, LI Z, et al. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2,4,6-triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37013-37026. |
38 |
PARK M W, PARK S, CHOI N S. Unanticipated mechanism of the trimethylsilyl motif in electrolyte additives on nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c11996.
doi: 10.1021/acsami.0c11996 |
39 |
SHANG H, PENG G, LIU W, et al. Improving the cyclic stability of LiNi0.5Mn1.5O4 at high cutoff voltage by using pyrene as a novel additive[J]. Energy Technology, 2020, doi: 10.1002/ente.202000671.
doi: 10.1002/ente.202000671 |
40 |
ZANG X F, LI Z, FANG Y, et al. Simultaneous interphase optimizations on large-area anode and cathode of high-energy-density lithium-ion pouch cells by a multiple additives strategy[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c12829.
doi: 10.1021/acsami.0c12829 |
41 | LIU Y, HAMAM I, DAHN J R. A study of vinylene carbonate and prop-1-ene-1,3 sultone electrolyte additives using polycrystalline LiNi0.6Mn0.2Co0.2O2 in positive/positive symmetric cells[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba36a. |
42 | MA H, HWANG D, AHN Y J, et al. In situ interfacial tuning to obtain high-performance nickel-rich cathodes in lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29365-29375. |
43 | AMINE R, LIU J, ACZNIK I, et al. Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(25): doi: 10.1002/aenm.202000901. |
44 | LANG S Y, SHEN Z Z, HU X C, et al. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode[J]. Nano Energy, 2020, 75: doi: 10.1016/j.nanoen.2020.104967. |
45 | CHANG Z, QIAO Y, DENG H, et al. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery[J]. Joule, 2020, 4(8): 1776-1789. |
46 | LIU W, LI J, LI W, et al. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17396-x. |
47 | SANCHEZ-RAMIREZ N, ASSRESAHEGN B D, TORRESI R M, et al. Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes[J]. Energy Storage Materials, 2020, 25: 477-486. |
48 | CANGAZ S, HIPPAUF F, REUTER F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001320. |
49 |
LEE J, LEE K, LEE T, et al. In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202001702.
doi: 10.1002/adma.202001702 |
50 | SASTRE J, CHEN X, ARIBIA A, et al. Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36196-36207. |
51 | GIRARD G M A, WANG X, YUNIS R, et al. Stable performance of an all-solid-state Li metal cell coupled with a high-voltage nca cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte[J]. Journal of Solid State Electrochemistry, 2020, 24(10): 2479-2485. |
52 | HUO H, LIANG J, ZHAO N, et al. Dynamics of the garnet/Li-interface for dendrite-free solid-state batteries[J]. ACS Energy Letters, 2020, 5(7): 2156-2164. |
53 | KRAUSKOPF T, MOGWITZ B, HARTMANN H, et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. Advanced Energy Materials, 2020, 10(27): doi: 10.1002/aenm.202000945. |
54 | JAFTA C J, HILGER A, SUN X G, et al. A multidimensional operando study showing the importance of the electrode macrostructure in lithium sulfur batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6965-6976. |
55 | DI LECCE D, MARANGON V, DU W, et al. The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery[J]. Journal of Power Sources, 2020, 472: doi: 10.1016/j.jpowsour.2020.228424. |
56 | HOU L P, YUAN H, ZHAO C Z, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
57 | WANG W, WANG D, WANG G, et al. Elastic, conductive coating layer for self-standing sulfur cathode achieving long lifespan Li-S batteries[J]. Advanced Energy Materials, 2020, 10(25): doi: 10.1002/aenm.201904026. |
58 |
HE J, BHARGAV A, MANTHIRAM A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202004741.
doi: 10.1002/adma.202004741 |
59 |
PENG L, WEI Z, WAN C, et al. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nature Catalysis, 2020, doi: 10.1038/s41929-020-0498-x.
doi: 10.1038/s41929-020-0498-x |
60 | LEE S C, JEONG J, PARK H G, et al. Binder-assisted electrostatic spray deposition of LiCoO2 and graphite films on coplanar interdigitated electrodes for flexible/wearable lithium-ion batteries[J]. Journal of Power Sources, 2020, 472: doi: 10.1016/j.jpowsour.2020.228573. |
61 | YUE J, HUANG Y, LIU S, et al. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36066-36071. |
62 | ISOZUMI H, KUBOTA K, TATARA R, et al. Impact of newly developed styrene-butadiene-rubber binder on the electrode performance of high-voltage LiNi0.5Mn1.5O4 electrode[J]. Acs Applied Energy Materials, 2020, 3(8): 7978-7987. |
63 | LI W, CHO Y G, YAO W, et al. Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228579. |
64 |
PARK J, KIM K T, OH D Y, et al. Digital twin-driven all-solid-state battery: Unraveling the physical and electrochemical behaviors[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202001563.
doi: 10.1002/aenm.202001563 |
65 | BERG P, SOELLNER J, JOSSEN A. Structural dynamics of lithium-ion cells-part I: Method, test bench validation and investigation of lithium-ion pouch cells[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100916. |
66 | TORNHEIM A, O'HANLON D C. What do coulombic efficiency and capacity retention truly measure? A deep dive into cyclable lithium inventory, limitation type, and redox side reactions[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/ab9ee8. |
67 |
CHEN H, BUSTON J E H, GILL J, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate[J]. Journal of Power Sources, 2020, 472.doi: 10.1016/j.jpowsour.2020.228585.
doi: 10.1016/j.jpowsour.2020.228585 |
68 | KEEFE A S, WEBER R, HILL I G, et al. Studies of the sei layers in Li(Ni0.5Mn0.3Co0.2)O2/artificial graphite cells after formation and after cycling[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abaa1b. |
69 |
SCHWEIDLER S, BIANCHINI M, HARTMANN P, et al. The sound of batteries: An operando acoustic emission study of the LiNiO2 cathode in Li-ion cells[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000099.
doi: 10.1002/batt.202000099 |
70 | WOLFMAN M, YU Y S, MAY B M, et al. Mapping competitive reduction upon charging in LiNi0.8Co0.15Al0.05O2 primary particles[J]. Chemistry of Materials, 2020, 32(14): 6161-6175. |
71 | LI Z, YIN L, MATTEI G S, et al. Synchrotron operando depth profiling studies of state-of-charge gradients in thick Li(Ni0.8Mn0.1Co0.1)O2 cathode films[J]. Chemistry of Materials, 2020, 32(15): 6358-6364. |
72 | HANDY J V, LUO Y, ANDREWS J L, et al. An atomic view of cation diffusion pathways from single-crystal topochemical transformations[J]. Angewandte Chemie-International Edition, 2020, 59(38): 16385-16392. |
73 | TERREBLANCHE J S, THOMPSON D L, ALDOUS I M, et al. Experimental visualization of commercial lithium ion battery cathodes: Distinguishing between the microstructure components using atomic force microscopy[J]. Journal of Physical Chemistry C, 2020, 124(27): 14622-14631. |
74 | HOPE M A, RINKEL B L D, GUNNARSDOTTIR A B, et al. Selective nmr observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-16114-x. |
75 | CORON E, GENIES S, CUGNET M, et al. Impact of lithium-ion cell condition on its second life viability[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba703. |
76 |
LI Q, LI H, XIA Q, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2020, doi: 10.1038/s41563-020-0756-y.
doi: 10.1038/s41563-020-0756-y |
77 |
XU C, MARKER K, LEE J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries[J]. Nature Materials, 2020, doi: 10.1038/s41563-020-0767-8.
doi: 10.1038/s41563-020-0767-8 |
78 |
GENG L, WOOD D L, LEWIS S A, et al. High accuracy in-situ direct gas analysis of Li-ion batteries[J]. Journal of Power Sources, 2020, 466.doi: 10.1016/j.jpowsour.2020.228211.
doi: 10.1016/j.jpowsour.2020.228211 |
79 |
KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: A comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202001035.
doi: 10.1002/aenm.202001035 |
80 | AHMED S, BIANCHINI M, POKLE A, et al. Visualization of light elements using 4D stem: The layered-to-rock salt phase transition in LiNiO2 cathode material[J]. Advanced Energy Materials, 2020, 10(25): doi: 10.1002/aenm.202001026. |
81 |
CRAFTON M J, YUE Y, HUANG T Y, et al. Anion reactivity in cation-disordered rocksalt cathode materials: The influence of fluorine substitution[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202001500.
doi: 10.1002/aenm.202001500 |
82 |
MADSEN K E, BASSETT K L, TA K, et al. Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando X-ray tomography[J]. Advanced Materials Interfaces, 2020, doi: 10.1002/admi.202000751.
doi: 10.1002/admi.202000751 |
83 | LI S, YANG L, WANG P, et al. Targeted research on the single role of lithium bis(oxalate)borate in the film-forming process through a novel lithium salt-free electrolyte system[J]. Journal of Power Sources, 2020, 471: doi: 10.1016/j.jpowsour.2020.228426. |
84 | KIMURA Y, FAKKAO M, NAKAMURA T, et al. Influence of active material loading on electrochemical reactions in composite solid-state battery electrodes revealed by operando 3D CT-xanes imaging[J]. ACS Applied Energy Materials, 2020, 3(8): 7782-7793. |
85 | CHEN C, ZHOU T, DANILOV D L, et al. Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in si electrodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17104-9. |
86 | WEI C Y, SUN Y T, LIU Y L, et al. Lithiation-induced fracture of silicon nanowires observed by in-situs canning electron microscopy[J]. Nanotechnology, 2020, 31(36): doi: 10.1088/1361-6528/ab957a. |
87 | FINEGAN D P, QUINN A, WRAGG D S, et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes[J]. Energy & Environmental Science, 2020, 13(8): 2570-2584. |
88 | INOO A, FUKUTSUKA T, MIYAHARA Y, et al. Effect of electrolyte additives on kinetic parameters of lithium-ion transfer reactions at electrolyte/graphite interface[J]. Electrochemistry, 2020, 88(5): 365-368. |
89 | DENG Y, WANG Z, MA Z, et al. Positive-temperature-coefficient graphite anode as a thermal runaway firewall to improve the safety of LiCoO2/graphite batteries under abusive conditions[J]. Energy Technology, 2020, 8(3): doi: 10.1002/ente.201901037. |
90 | FEAR C, ADHIKARY T, CARTER R, et al. In operando detection of the onset and mapping of lithium plating regimes during fast charging of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30438-30448. |
91 | BENDERS S, MOHAMMADI M, KLUG C A, et al. Nuclear magnetic resonance spectroscopy of rechargeable pouch cell batteries: Beating the skin depth by excitation and detection via the casing[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-70505-0. |
92 | YAMAKAWA S, OHTA S, KOBAYASHI T. Effect of positive electrode microstructure in all-solid-state lithium-ion battery on high-rate discharge capability[J]. Solid State Ionics, 2020, 344: doi.org/10.1016/j.ssi.2019.115079. |
93 | WALTHER F, RANDAU S, SCHNEIDER Y, et al. Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(14): 6123-6136. |
94 | BELTRAN S P, CAO X, ZHANG J G, et al. Localized high concentration electrolytes for high voltage lithium-metal batteries: Correlation between the electrolyte composition and its reductive/oxidative stability[J]. Chemistry of Materials, 2020, 32(14): 5973-5984. |
95 | JORN R, RAGUETTE L, PEART S. Investigating the mechanism of lithium transport at solid electrolyte interphases[J]. Journal of Physical Chemistry C, 2020, 124(30): 16261-16270. |
96 |
ANGARITA-GOMEZ S, BALBUENA P B. Insights into lithium ion deposition on lithium metal surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2020, doi: 10.1039/d0cp03399e.
doi: 10.1039/d0cp03399e |
97 | HOUCHINS G, VISWANATHAN V. Towards ultra low cobalt cathodes: A high fidelity computational phase search of layered Li-Ni-Mn-Co oxides[J]. Journal of the Electrochemical Society, 2019, 167(1): doi: 10.1149/2.0062007jes. |
98 |
LEE Y, LEE T, HONG J, et al. Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202004841.
doi: 10.1002/adfm.202004841 |
99 | CHENG J, SIVONXAY E, PERSSON K A. Evaluation of amorphous oxide coatings for high-voltage Li-ion battery applications using a first-principles framework[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35748-35756. |
100 | LI H, ZHANG X, ZHANG C, et al. Building a thermal shutdown cathode for Li-ion batteries using temperature-responsive poly(3-dodecylthiophene)[J]. Energy Technology, 2020, 8(7): doi: 10.1002/ente.202000365. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||