储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1812-1827.doi: 10.19799/j.cnki.2095-4239.2020.0341

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2020.08.012020.09.30

季洪祥(), 起文斌, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2020-10-15 修回日期:2020-10-20 出版日期:2020-11-05 发布日期:2020-10-28
  • 通讯作者: 黄学杰 E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn
  • 作者简介:季洪祥(1997—),男,博士研究生,从事锂离子电池正极材料的研究,E-mail:sdujhx@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFB0104100)

Reviews of selected 100 recent papers for lithium batteriesAug. 1 2020 to Sept. 30 2020

Hongxiang JI(), Wenbin QI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-10-15 Revised:2020-10-20 Online:2020-11-05 Published:2020-10-28
  • Contact: Xuejie HUANG E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年8月1日至2020年9月30日上线的锂电池研究论文,共有3062篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元、镍酸锂、高电压钴酸锂和镍锰酸锂的表面改性和体相掺杂,以及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究侧重于电极结构的设计、预锂化、界面稳定机制等,金属锂负极的研究侧重于通过电极结构的设计来调控SEI的生长以及抑制锂枝晶的形成。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。液态电解液方面主要涉及对溶剂、锂盐以及添加剂的选择优化设计,特别是针对高电压镍锰酸锂的电解液研究有多篇论文。针对固态电池,有文章提到通过合金化负极的设计提高锂沉积的均匀性;也有文章研究了硫化物固体电解质基全固态电极的湿法涂覆技术。锂硫电池的研究重点是提高硫正极的活性。测试表征方面偏重于用原位方法对材料结构和电极/电解质界面、热失效机理等进行观测和分析,固态电池的界面问题研究是热点。此外,还有多篇论文用理论计算对材料的电子结构以及界面结构及锂离子的输运机制进行了探讨。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 3062 papers online from Aug. 1, 2020 to Sept. 30, 2020. 100 of them were selected to be highlighted. High-nickel ternary layered, spinel, high-voltage LCO layered cathode materials are still under extensive investigations for studying Li+ intercalation-deintercalation mechanism and evolution of structure, and the influences of doping and interface modifications on their electrochemical performances. The researches of silicon-based composite anode materials mainly focus on the design of electrode structure, pre-lithiation and stabilization of the interface while the researches of lithium metal anode mainly focus on the design of electrode structure and further to regulate the growth of SEI and inhibit the formation of lithium dendrites. Large efforts have been devoted to solid state electrolytes including oxide, sulfide, polymer and composite solid state electrolytes. The research works on liquid electrolytes involves mainly the optimal design of solvents, lithium salts and additives, particularly electrolyte for high-voltage spinel cathode materials. For solid-state batteries, there are papers studying the design of alloyed anodes to improve the uniformity of lithium deposition; there are also papers studying the wet coating technology of sulfide solid electrolyte-based all-solid electrodes. The research focus of lithium-sulfur batteries is to improve the activity of sulfur cathodes. The focuses of characterization techniques are on in-situ methods to observe and analyze the material structure, electrode/electrolyte interface, thermal failure mechanism, interface of solid-state batteries etc. Furthermore, there are a few papers related to the theoretical works for the electric structure of materials, Li+ transport and Li metal deposition.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: