储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 295-309.doi: 10.19799/j.cnki.2095-4239.2020.0407
田孟羽(), 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2020-12-11
修回日期:
2020-12-20
出版日期:
2021-01-05
发布日期:
2021-01-08
通讯作者:
黄学杰
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
作者简介:
田孟羽(1996—),男,硕士研究生,研究方向为锂离子电池负极材料,E-mail:基金资助:
Mengyu TIAN(), Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2020-12-11
Revised:
2020-12-20
Online:
2021-01-05
Published:
2021-01-08
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年10月1日至2020年11月30日上线的锂电池研究论文,共有2731篇,选择其中100篇加以评论。层状正极材料主要研究了高镍三元材料和富锂相材料中的氧氧化还原机制,掺杂和表面包覆是常用的改性方法。硅基复合负极材料的研究重点包括负极嵌锂的体积膨胀问题以及通过引入新的黏结剂和在材料表面预形成SEI等方法提升材料的循环性能,有关负极的研究工作还包括Ti2Nb10O29负极、还原氧化石墨烯及其复合材料负极、三维碳负极材料等。电解液添加剂的研究包括适用于高电压三元材料、富锂材料、高电压磷酸钴锂材料、锂硫电池和厚电极的功能电解液添加剂。固态电解质的研究对象涵盖硫化物固体电解质、聚合物与硫化物/氧化物固体电解质复合材料、硅掺杂的Li6PS5I和硼酸锂掺杂的Li7La3Zr2O12等。无机电解质和无机/聚合物复合电解质固态电池、锂硫和锂空气电池的论文也有几篇。表征分析偏重于固液界面SEI、金属锂沉积过程、锂在电极中的空间分布he1电池气胀问题等。理论模拟工作涉及SEI形成机制以及厚电极电池的动力学等。
中图分类号:
田孟羽, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.10.01—2020.11.30)[J]. 储能科学与技术, 2021, 10(1): 295-309.
Mengyu TIAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2020 to Nov. 30, 2020)[J]. Energy Storage Science and Technology, 2021, 10(1): 295-309.
1 | LI N, HWANG S, SUN M, et al. Unraveling the voltage decay phenomeon in Li-rich layered oxide cathode of no oxygen activity[J]. Advanced Energy Materials, 2019, 9(47): doi: 10.1002/aenm.201902258. |
2 | QIU Z, ZHANG Y, LIU Z, et al. Stabilizing Ni-rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation co-doping for high-energy lithium-ion batteries[J]. Chemelectrochem, 2020, 7(18): 3811-3817. |
3 | YAN W, JIA X, YANG S, et al. Synthesis of single crystal LiNi0.92Co0.06Mn0.01Al0.01O2 cathode materials with superior electrochemical performance for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abacea. |
4 | KIM U H, PARK G T, SON B K, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-00693-6. |
5 | ZUO C, HU Z, QI R, et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn-Teller distortion[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202000363. |
6 | GAO A, LI X, MENG F, et al. In operando visualization of cation disorder unravels voltage decay in Ni-rich cathodes[J]. Small Methods, 2020, doi: 10.1002/smtd.202000730. |
7 | NING F, LI B, SONG J, et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-18423-7. |
8 | CRAFTON M J, YUE Y, HUANG T Y, et al. Anion reactivity in cation -disordered rocksalt cathode materials: The influence of fluorine substitution[J]. Advanced Energy Materials, 2020, 10(35): doi: 10.1002/aenm.202001500. |
9 | OKUNO R, YAMAMOTO M, KATO A, et al. Stable cyclability caused by highly dispersed nanoporous Si composite anodes with sulfide-based solid electrolyte[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc3ff. |
10 | YANG H W, MUNISAMY M, KWON M T, et al. Improved high rate and temperature stability using an anisotropically aligned pillar-type solid electrolyte interphase for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42781-42789. |
11 | FENG C, LI J, CHENG S, et al. An atomistic perspective on lithiation kinetics and morphological evolution in void-involved silicon/carbon nanohybrid[J]. Materials & Design, 2020, 195: doi: 10.1016/j.matdes.2020.109037. |
12 | NAM J, KIM E, RAJEEV K K, et al. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-71625-3. |
13 | WANG Y, SATOH M, ARAO M, et al. High-energy, long-cycle-life secondary battery with electrochemically pre-doped silicon anode[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-59913-4. |
14 | CHUNG E H, KIM J P, KIM H G, et al. The synthesis and electrochemical performance of Si composite with hollow carbon microtubes by the carbonization of milkweed from nature as anode template for lithium ion batteries[J]. Energies, 2020, 13(19): 1-10. |
15 | WANG S, DUAN Q, LEI J, et al. Slime-inspired polyacrylic acid-borax crosslinked binder for high-capacity bulk silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228365. |
16 | ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17686-4. |
17 | BUDAK O, SRIMUK P, ASLAN M, et al. Titanium niobium oxide Ti2Nb10O29/carbon hybrid electrodes derived by mechanochemically synthesized carbide for high-performance lithium-ion batteries[J]. ChemSusChem, 2020, doi: 10.1002/cssc.202002229. |
18 | CAMPEON B D L, YOSHIKAWA Y, TERANISHI T, et al. Sophisticated rgo synthesis and pre-lithiation unlocking full-cell lithium-ion battery high-rate performances[J]. Electrochimica Acta, 2020, 363: doi: 10.1016/j.electacta.2020.137257. |
19 | JIN Y, YU H, LIANG X. Simple approach: Heat treatment to improve the electrochemical performance of commonly used anode electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41368-41380. |
20 | CHEN L, WENG Y, MENG Y, et al. Integrated structure of tin-based anodes enhancing high power density and long cycle life for lithium ion batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 9337-9347. |
21 | DEES D W, RODRIGUES M T, KALAGA K, et al. Apparent increasing lithium diffusion coefficient with applied current in graphite[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abaf9f. |
22 | LI N, ZHANG K, XIE K, et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers[J]. Advanced Materials, 2020, 32(7): doi: 10.1002/adma.201907079. |
23 | NARITA K, CITRIN M A, YANG H, et al. 3d architected carbon electrodes for energy storage[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202002637. |
24 | LIU G, WENG W, ZHANG Z, et al. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all -solid-state lithium batteries[J]. Nano Letters, 2020, 20(9): 6660-6665. |
25 | JIANG W, YAN L, ZENG X, et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c17828. |
26 | ZHANG J, LI L, ZHENG C, et al. Silicon-doped argyrodite solid |
electrolyte Li6PS5I with improved ionic conductivity and interfacial | |
compatibility for high-performance all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41538-41545. | |
27 | SIYAL S H, JAVED M S, JATOI A H, et al. In situ curing technology for dual ceramic composed by organic-inorganic functional polymer gel electrolyte for dendritic-free and robust lithium-metal batteries[J]. Advanced Materials Interfaces, 2020, 7(20): doi: 10.1002/admi.202000830. |
28 | ZAGORSKI J, SILVAN B, SAUREL D, et al. Importance of composite electrolyte processing to improve the kinetics and energy density of Li metal solid-state batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8344-8355. |
29 | STRAUSS F, TEO J H, JANEK J, et al. Investigations into the superionic glass phase of Li4PS4I for improving the stability of high-loading all -solid-state batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(20): 3953-3960. |
30 | WEI T, ZHANG Z H, WANG Z M, et al. Ultrathin solid composite |
electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSi/ | |
succinonitrile for high-performance solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 9428-9435. | |
31 | ZHU G L, ZHAO C Z, YUAN H, et al. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2020, 31: 267-273. |
32 | SUN J, HE C, YAO X, et al. Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202006381. |
33 | KOBI S, AMARDEEP, VYAS A, et al. Al and Mg co-doping towards development of air-stable and Li-ion conducting Li-La-zirconate based solid electrolyte exhibiting low electrode/electrolyte interfacial resistance[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abad66. |
34 | WANG M J, CARMONA E, GUPTA A, et al. Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19004-4. |
35 | HOU J, LU L, WANG L, et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-18868-w. |
36 | AUPPERLE F, ESHETU G G, EBERMAN K W, et al. Realizing a high-performance LiNi0.6Mn0.2Co0.2O2/silicon-graphite full lithium ion battery cellviaa designer electrolyte additive[J]. Journal of Materials Chemistry A, 2020, 8(37): 19573-19587. |
37 | HAN X, SUN J. Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSi based electrolyte[J]. Journal of Power Sources, 2020, 474: doi: 10.1016/j.jpowsour.2020.228664. |
38 | TU W, WEN Y, YE C, et al. Phase transformation of lithium-rich oxide cathode in full cell and its suppression by solid electrolyte interphase on graphite anode[J]. Energy & Environmental Materials, 2020, 3(1): 19-28. |
39 | WANG Z, JIANG L, LIANG C, et al. Effects of 3-fluoroanisol as an electrolyte additive on enhancing the overcharge endurance and thermal stability of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb8b2. |
40 | ROBINSON J B, OWEN R E, KOK M D R, et al. Identifying defects in Li-ion cells using ultrasound acoustic measurements[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abb174. |
41 | KREMER L S, DANNER T, HEIN S, et al. Influence of the electrolyte salt concentration on the rate capability of ultra-thick NCM 622 electrodes[J]. Batteries & Supercaps, 2020, 3(11): 1172-1182. |
42 | LIU D, KIM C, PEREA A, et al. High-voltage lithium-ion battery using substituted LiCoPO4: Electrochemical and safety performance of 1.2 A·h pouch cell[J]. Materials, 2020, 13(19): doi: 10.3390/ma.13194450. |
43 | ZHU C, LV W, CHEN J, et al. Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries[J]. Journal of Power Sources, 2020, 476: doi: 10.1016/j.jpowsour.2020.228697. |
44 | FANG Z, ZHENG Z, CHENG W, et al. Mechanism of stability enhancement for adiponitrile high voltage electrolyte system referring to addition of fluoroethylene carbonate[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.588389. |
45 | KRUEGER B, BALBOA L, DOHMANN J F, et al. Solid electrolyte |
interphase evolution on lithium metal electrodes followed by scanning electrochemical microscopy under realistic battery cycling current | |
densities[J]. Chemelectrochem, 2020, 7(17): 3590-3596. | |
46 | WEI Y, HU F, LI Y, et al. Constructing stable anodic interphase for quasi-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39335-39341. |
47 | JIA H, XU Y, BURTON S D, et al. Enabling ether-based electrolytes for long cycle life of lithium-ion batteries at high charge voltage[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c18177. |
48 | CHEN S, ZHANG J, NIE L, et al. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Advanced materials (Deerfield Beach, Fla.), 2020, doi: 10.1002/adma.202002325: e2002325-e2002325. |
49 | YANG Y N, LI Y X, LI Y Q, et al. On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes[J]. Nature Communications, 2020, 11(1): 5519-5519. |
50 | ASHBY D S, CHOI C S, EDWARDS M A, et al. High-performance solid-state lithium-ion battery with mixed 2d and 3d electrodes[J]. ACS Applied Energy Materials, 2020, 3(9): 8402-8409. |
51 | YANG X, HU Y, DUNLAP N, et al. A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity[J]. Angewandte Chemie-International Edition, 2020, 59(46): 20385-20389. |
52 | LI Y, CAO D, ARNOLD W, et al. Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries[J]. Energy Storage Materials, 2020, 31: 344-351. |
53 | KIM S, HARADA K, TOYAMA N, et al. Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification[J]. Journal of Energy Chemistry, 2020, 43: 47-51. |
54 | RUAN Y, LU Y, LI Y, et al. A 3d cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202007815. |
55 | HUANG C, LEUNG C L A, LEUNG P, et al. A solid-state battery cathode with a polymer composite electrolyte and low tortuosity microstructure by directional freezing and polymerization[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202002387. |
56 | LEE J, LEE K, LEE T, et al. In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries[J]. Advanced Materials, 2020, 32(37): doi: 10.1002/adma.202001702. |
57 | LIU H, CHEN T, XU Z, et al. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c17563. |
58 | SINGH N, HORWATH J P, BONNICK P, et al. Role of lithium iodide addition to lithium thiophosphate: Implications beyond conductivity[J]. Chemistry of Materials, 2020, 32(17): 7150-7158. |
59 | KISU K, KIM S, YOSHIDA R, et al. Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance[J]. Journal of Energy Chemistry, 2020, 50: 424-429. |
60 | LIU F, SUN G, WU H B, et al. Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries[J]. Nature |
Communications, 2020, 11(1): doi: 10.1038/s41467-020-19070-8. | |
61 | XIONG Q, HUANG G, ZHANG X B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator[J]. Angewandte Chemie-International Edition, 2020, 59(43): 19311-19319. |
62 | KONDORI A, JIANG Z, ESMAEILIRAD M, et al. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life[J]. Advanced Materials, 2020, doi: 10.1002/adma.202004028. |
63 | DEWALD G F, OHNO S, HERING J G, et al. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000194. |
64 | BAEK M, SHIN H, CHAR K, et al. New high donor electrolyte for lithium-sulfur batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202005022. |
65 | SUNG S H, KIM S, PARK J H, et al. Role of PVDF in rheology and microstructure of NCM cathode slurries for lithium-ion battery[J]. Materials, 2020, 13(20): doi: 10.3390/ma13204544. |
66 | ISOZUMI H, HORIBA T, KUBOTA K, et al. Application of modified styrene-butadiene-rubber-based latex binder to high-voltage operating LiCoO2 composite electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228332. |
67 | PALANISAMY M, PAREKH M H, POL V G. In situ replenishment of formation cycle lithium-ion loss for enhancing battery life[J]. Advanced Functional Materials, 2020, 30(46): doi: 10.1002/adfm.202003668. |
68 | BUSCHE M R, WEISS M, LEICHTWEISS T, et al. The formation of the solid/liquid electrolyte interphase (SLEI) on NASICON-type glass ceramics and LIPON[J]. Advanced Materials Interfaces, 2020, 7(19): doi: 10.1002/admi.202000380. |
69 | WALTHER F, RANDAU S, SCHNEIDER Y, et al. Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(14): 6123-6136. |
70 | GUNNARSDOTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in situ nmr study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemical Society, 2020, doi: 10.1021/jacs.0c10258. |
71 | MORITA K, TSUCHIYA B, YE R, et al. In-situ total Li depth profiling of solid state Li ion batteries under charging and discharging by means of transmission elastic recoil detection analysis with 5 meV He2+ ions[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2020, 479: 249-253. |
72 | SUZUKI K, OTSUKA Y, TSUJI N, et al. Identifying the degradation mechanism in commercial lithium rechargeable batteries via high-energy X-ray compton scattering imaging[J]. Applied Sciences-Basel, 2020, 10(17): doi: 10.3390/app10175855. |
73 | OKASINSKI J S, SHKROB I A, CHUANG A, et al. In situ X-ray spatial profiling reveals uneven compression of electrode assemblies and steep lateral gradients in lithium-ion coin cells[J]. Physical Chemistry Chemical Physics, 2020, 22(38): 21977-21987. |
74 | DENG J, KUMAR A, SIMUNOVIC S, et al. Mechanical modeling and testing of pouch cells under various loading conditions[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abbce0. |
75 | SHITAW K N, YANG S C, JIANG S K, et al. Decoupling interfacial reactions at anode and cathode by combining online electrochemical mass spectroscopy with anode-free Li-metal battery[J]. Advanced |
Functional Materials, 2020, doi: 10.1002/adfm.202006951. | |
76 | FANG R, GE H, WANG Z, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb83a. |
77 | RINKEL B L D, HALL D S, TEMPRANO I, et al. Electrolyte oxidation pathways in lithium-ion batteries[J]. Journal of the American Chemical Society, 2020, 142(35): 15058-15074. |
78 | HUANG H, WU C, LIU Z, et al. Non-destructive ct method for spatially resolved measurement of elemental content and density of Li-B alloys[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00781. |
79 | MADSEN K E, BASSETT K L, TA K, et al. Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando X-ray tomography[J]. Advanced Materials Interfaces, 2020, 7(19): doi: 10.1002/admi.202000751. |
80 | MARKER K, XU C, GREY C P. Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition[J]. Journal of the American Chemical Society, 2020, 142(41): 17447-17456. |
81 | MESSINGER R J, TAN VU H, BOUCHET R, et al. Magic-angle -spinning-induced local ordering in polymer electrolytes and its effects on solid-state diffusion and relaxation nmr measurements[J]. Magnetic Resonance in Chemistry, 2020, 58(11): 1118-1129. |
82 | DE VASCONCELOS L S, XU R, ZHAO K. Quantitative spatiotemporal Li profiling using nanoindentation[J]. Journal of the Mechanics and Physics of Solids, 2020, 144: doi: 10.1016/j.jmps.2020.104102. |
83 | DIAZ-LOPEZ M, CUTTS G L, ALLAN P K, et al. Fast operando X-ray pair distribution function using the DRIX electrochemical cell[J]. Journal of Synchrotron Radiation, 2020, 27: 1190-1199. |
84 | KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: A comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, 10(36): doi: 10.1002/aenm.202001035. |
85 | LIANG C, ZHANG X, XIA S, et al. Unravelling the room-temperature atomic structure and growth kinetics of lithium metal[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19206-w. |
86 | HONG C S, HAN S M. Mechanical properties of electrochemically lithiated Sn[J]. Extreme Mechanics Letters, 2020, 40: doi: 10.1016/j.eml.2020.100907. |
87 | MO R, TAN X, LI F, et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14859-z. |
88 | KITTA M, SANO H. Determination of solid electrolyte interphase formation mechanism on negative electrode surface in Li-O2 battery electrolyte by operando electrochemical atomic force microscopy observation[J]. Applied Surface Science, 2020, 528: doi: 10.1016/j.apsusc.2020.146997. |
89 | AIKEN C P, HARLOW J E, TINGLEY R, et al. Accelerated failure in LiNi0.5Mn0.3Co0.2O2/graphite pouch cells due to low LiPF6 concentration and extended time at high voltage[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abbe5b. |
90 | YE L, FITZHUGH W, GIL-GONZALEZ E, et al. Toward higher voltage solid-state batteries by metastability and kinetic stability design[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001569. |
91 | CHOUDHURY R, WANG M, SAKAMOTO J. The effects of electric field distribution on the interface stability in solid electrolytes[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc034. |
92 | PARK J, KIM K T, OH D Y, et al. Digital twin-driven all-solid-state battery: Unraveling the physical and electrochemical behaviors[J]. Advanced Energy Materials, 2020, 10(35): doi: 10.1002/aenm.202001563. |
93 | WU Y J, TANAKA T, KOMORI T, et al. Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes[J]. Science and Technology of Advanced Materials, 2020, 21(1): 712-725. |
94 | HOSSAIN M J, PAWAR G, LIAW B, et al. Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A reaxff reactive force field study[J]. Journal of Chemical Physics, 2020, 152(18): doi: 10.1063/5.0003333. |
95 | KHODR Z, MALLET C, DAIGLE J C, et al. Electrochemical study of functional additives for Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abae92. |
96 | PARK K Y, PARK J W, SEONG W M, et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228369. |
97 | STURM J, FRANK A, RHEINFELD A, et al. Impact of electrode and cell design on fast charging capabilities of cylindrical lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb40c. |
98 | ARIYOSHI K, SUGAWA J, MASUDA S. Differentiating the rate capabilities of lithium-nickel-manganese oxide LiNi1/2Mn3/2O4 insertion materials and electrodes using diluted electrode methods[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc10a. |
99 | ALI Y, IQBAL N, LEE S. Role of SEI layer growth in fracture probability in lithium-ion battery electrodes[J]. International Journal of Energy Research, 2020, doi: 10.1002/er.6150. |
100 | LEE E, BENEDEK R. Cluster expansion analysis of atomic order in Li-ion battery cathode material LiCoyNi1-yO2[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abba61. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[7] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[8] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[11] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[12] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[13] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[14] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[15] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||