1 |
陈永翀, 冯彩梅, 刘勇. 可再生能源配套储能的四个基本原则[J]. 能源, 2020(11): 37-38.
|
2 |
中国化学与物理电源行业协会储能应用分会. 2020储能产业应用研究报告[C]//第十届中国国际储能大会: 中国化学与物理电源行业协会储能应用分会产业政策研究中心, 2020.
|
3 |
许正权, 宋学锋, 李敏莉. 本质安全化管理思想及实证研究框架[J]. 中国安全科学学报, 2006, 16(12): 79-85.
|
|
XU Z Q, SONG X F, LI M L. Thoughts and empirical research frame on the inherent safety management theory[J]. China Safety Science Journal, 2006, 16(12): 79-85.
|
4 |
XIN L, JIN C Y. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2020, 35: 470-499.
|
5 |
PARHIZI M, AHMED M B, JAIN A, et al. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370: 27-35.
|
6 |
JOINER.Risk management[M]. Sydney: Sydney University Press, 2004: 20.
|
7 |
蔡承伟. 本质安全管理在发电企业安全管理中的应用研究[D]. 广州: 华南理工大学, 2013.CAI Chengwei. The application of intrinsic safety management in the safety management of power generation enterprises[D]. Guangzhou: South China University of Technology, 2013.
|
8 |
Kletz T A. Inherently safer design the growth of an idea[J]. Process Safety Progress, 1996, 15(1): 5.
|
9 |
Kletz T A. The constraints on inherently safer design and other innovation[J]. Process Safety Progress, 1999, 18(1): 64-69.
|
10 |
安全管理网. 本质安全管理理论基础:本质安全[EB/OL]. http://www.safehoo.com/item/187050.aspx, 2011-06-06.
|
11 |
仇星火. 隔爆本质安全型矿灯多功能免维护铅酸蓄电池: CN2710178[P]. 2005-07-13.
|
12 |
MAYA G J, DAVIDSON A, MONAHOV B. Lead batteries for utility energy storage: a review[J]. Journal of Energy Storage, 2018, 15: 145-157.
|
13 |
YANG Yue, Emenike G.Okonkwo, HUANG Guoyong, et al. On the sustainability of lithium ion battery industry-a review and perspective[J].Energy Storage Materials, 2021, 36: 186-212.
|
14 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 爆炸性环境 第4部分:由本质安全型"i"保护的设备 GB 3836.4—2010[S]. 北京: 中国标准出版社, 2011.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Explosive atmospheres—Part 4: Equipment protection by intrinsic safety I. GB 3836.4—2010[S]. Beijing: Standards Press of China, 2011.
|
15 |
袁庆丰. 锂离子电池硅基复合负极材料和电池安全性的研究[D]. 广州: 华南理工大学, 2015.
|
16 |
卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669.
|
|
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669.
|
17 |
QIN Peng, SUN Jinhua, YANG Xulai, et al.Battery thermal management system based on the forced-air convection: A review[J].eTransportation, 2021(7):100097.
|
18 |
曹建华. 基于相变材料的锂离子电池热管理系统研究[D]. 北京: 清华大学, 2013.
|
19 |
陈永翀, 张晓虎, 张彬, 等. 一种锂浆料电池的维护再生设备以及维护再生方法: CN108695485B[P]. 2020-02-07.
|
20 |
吴松畔, 盛美玲, 唐辉, 等. 一种二回路冷却系统: CN112786221A[P]. 2021-05-11.
|
21 |
比亚迪股份有限公司.一种电池包、电动车和储能装置:CN 201910542987.2[P]. 2019-06-21.
|
22 |
王丽梅. 磷酸铁锂电池组安全保护技术研究[D]. 济南: 山东大学, 2015.
|
23 |
唐建华, 王弢. 一种软包锂电池模组防火方法: CN105789707A[P]. 2016-07-20.
|
24 |
FENG Xuning, REN Dongsheng, HE Xiangming. Mitigating thermal runaway of lithium-ion batteries[J].Cell Press, 2020, 4(4): 743-770.
|
25 |
KOSHIBA Y. Fire suppression efficiency of water mists containing organic solvents[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 1-12.
|
26 |
高迎慧, 李耀华, 韩静, 等. 一种集装箱高压储能系统的绝缘结构: CN210052594U[P]. 2020-02-11.
|
27 |
赵君龙. 变电站雷击过电压计算及对站内监测设备的影响[D]. 济南: 山东大学, 2015.
|
28 |
程鹏, 宋杲, 李炜, 等. 柱式断路器用复合套管耐腐蚀性能的试验研究[J]. 高压电器, 2015, 51(8): 131-135.
|
|
CHENG P, SONG G, LI W, et al. Experimental investigation on corrosion resistance of composite bushing for live tank circuit breaker[J]. High Voltage Apparatus, 2015, 51(8): 131-135.
|
29 |
吴俊洲, 陈奕津, 陈淑敏. 配电房柜式内置电池组自动灭火技术: CN209679350U[P]. 2019-11-26.
|
30 |
吴波. 一种具有隔绝空气功能的配电柜阻燃装置: CN111760221B[P]. 2021-07-09.
|
31 |
陈启霞, 叶忠昊. 中国AP1000核电厂技术标准体系建设浅析[J]. 能源与节能, 2013(3): 54-56.
|
|
CHEN Q X, YE Z H. Analysis of China AP1000 nuclear power plant technology standard system construction[J]. Energy and Energy Conservation, 2013(3): 54-56.
|
32 |
WANG Qingsong, PING Ping, ZHAO Xuejuan. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
33 |
GONZALEZ M S, YAN Q Z, HOLOUBEK J, et al. Draining over blocking: nano-composite Janus separators for mitigating internal shorting of lithium batteries[J]. Advanced Materials, 2020, 32(12): e1906836.
|
34 |
YE Yonghuang, LIP H S, SHI Yixiang, et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86: 281-291.
|
35 |
FENG X M, AI X P, YANG H X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries[J]. Electrochemistry Communications, 2004, 6(10): 1021-1024.
|
36 |
HOFMANN A, UHLMANN N, ZIEB C, et al. Preventing Li-ion cell explosion during thermal runaway with reduced pressure[J]. Applied Thermal Engineering, 2017, 124: 539-544.
|
37 |
INOUE T, MUKAI K. Are all-solid-state lithium-ion batteries really safe?-verification by differential scanning calorimetry with an all-inclusive microcell[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1507-1515.
|
38 |
LI Changgang, ZHANG Xudong, HE Wen, et al. Cathode materials for rechargeable zinc-ion batteries: from synthesis to mechanism and applications[J]. Journal of Power Sources, 2020, 449: 227596.
|
39 |
LIU Zhuoxin, HUANG Yan, HUANG Yang, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1): 180-232.
|
40 |
陈永翀, 张晓虎, 张彬, 等. 一种锂浆料电池的维护再生设备以及维护再生方法: CN108695485A[P]. 2018-10-23.
|
41 |
胡传跃, 李新海, 王志兴. 锂离子电池中电解液的热行为分析[J]. 中国稀土学报, 2004, 22(z1): 333-336.
|
|
HU Chuanyue, LI Xinhai, WANG Zhixing. Analysis on thermal behavior of electrolytes in lithium-ion batteries[J]. Journal of the Chinese Rare Earth Society, 2004, 22(z1): 333-336.
|
42 |
夏永姚, 罗加严, 王永刚. 水系锂离子电池的研究进展[J]. 电源技术, 2008(7): 431-434.
|
|
XIA Y Y,LUO J Y, WANG Y G. Research progress of aqueous lithium ion battery[J]. Chinese Journal of Power Sources, 2008(7): 431-434.
|
43 |
WANG Fei, BORODIN O, DING M S. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries[J]. Joule, 2018, 2(5): 927-937.
|
44 |
SHEN Yuanhao, LIU Bin, LIU Xiaorui, et al. Water-in-salt electrolyte for safe and high-energy aqueous battery[J]. Energy Storage Materials, 2021, 34: 461-474.
|
45 |
TANG Wei, ZHU Yusong, HOU Yuyang, et al.Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy and Environmental Science, 2013, 6(7): 2093-2104.
|
46 |
PASTA M, WESSELLS C D, LIU N, et al. Full open-framework batteries for stationary energy storage[J]. Nature Communications, 2014, 5: 3007.
|
47 |
CHEN Jing, WU Jiawei, WANG Xiaodong. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries[J]. Energy Storage Materials, 2021, 35: 70-87.
|
48 |
冯彩梅, 张晓虎, 陈永翀, 等. 新型电化学储能技术: 半固态锂电池[J]. 科技通报, 2017, 33(8): 19-26,179.
|
|
FENG Caimei, ZHANG Xiaohu, CHEN Yongchong, et al. Research progress of semi-solid lithium battery[J]. Bulletin of Science and Technology, 2017, 33(8): 19-26,179.
|
49 |
WANG Liping, ZHANG Xudong, WANG Taishan. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24): 1-8.
|
50 |
PEREA A, DONTIGNY M, ZAGHIB K. Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte[J]. Journal of Power Sources, 2017, 359: 182-185.
|
51 |
KIM J G, SON B, MUKHERJEE S. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322.
|
52 |
ZHUANG Hua, MA Wencheng. Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries[J]. Journal of Alloys and Compounds, 2021, 860: 157915.
|
53 |
LI Junhao, WANG Ruigang. Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries[J]. Ceramics International, 2021, 47(10A): 13280-13290.
|
54 |
DING Bing, WANG Jie, FAN Zengjie. Solid-state lithium-sulfur batteries: advances, challenges and perspectives[J]. Materials Today, 2020, 40: 114-131.
|
55 |
XIA Shuixin, WU Xinsheng, ZHANG Zhichu. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4): 753-785.
|
56 |
TANG Shuai, GUO Wei, FU Yongzhu. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 1-29.
|
57 |
SONG Junhua, XU Kang. Crossroads in the renaissance of rechargeable aqueous zinc batteries[J]. Materials Today, 2021, 45: 191-212.
|
58 |
李爱晶, 陈永翀, 张晓虎, 等. 锂离子液流电池监控系统的初步研究与设计[J]. 电工电能新技术, 2018, 37(2): 83-88.
|
|
LI Aijing, CHEN Yongchong, ZHANG Xiaohu, et al. Research and design of monitoring system for lithium-ion flow battery[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2): 83-88.
|
59 |
李薇, 丁晓雯. 核电事故应急对策与安全保障措施研究[J]. 中国电力教育, 2011(21): 110-127.
|