储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1643-1649.doi: 10.19799/j.cnki.2095-4239.2021.0248

• 物理储能十年专刊·飞轮 • 上一篇    下一篇

接触参数对储能飞轮转子碰摩行为的影响

贾翔宇(), 汪军水, 徐旸(), 张剀   

  1. 清华大学工程物理系,北京 100084
  • 收稿日期:2021-06-03 修回日期:2021-06-16 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:贾翔宇(1997—),男,博士研究生,研究方向为转子动力学,E-mail:jiaxy18@mails.tsinghua.edu.cn|徐旸,副研究员,研究方向为磁悬浮轴承技术及应用、转子动力学等,E-mail:xuxu@tsinghua.edu.cn
  • 基金资助:
    国家重点研发项目(2018YFB0905500);国家自然科学基金项目(51775292)

Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters

Xiangyu JIA(), Junshui WANG, Yang XU(), Kai ZHANG   

  1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • Received:2021-06-03 Revised:2021-06-16 Online:2021-09-05 Published:2021-09-08

摘要:

高速旋转的储能飞轮转子是飞轮储能技术的关键设备。正常工况下,借助于两端磁悬浮轴承的支承,飞轮转子稳定运行于转子轴颈与保护轴承之间的半径间隙内。当转子受到某些因素的扰动而偏离稳定轨迹时,其轴颈可能与保护轴承内圈发生碰摩,进而引起系统失稳。因此,研究碰摩作用对飞轮系统稳定性的影响,从而为优化系统接触参数、提升系统稳定性提供依据是必要的。本文利用考虑摩擦力的两自由度弹簧-阻尼系统模型,经过简化建立了描述飞轮转子碰摩过程的动力学方程,并使用四阶龙格-库塔直接积分法数值求解了系统在不同接触参数下的碰摩行为。计算发现,在实际接触刚度的范围内,转子系统的稳定性随摩擦系数的增大表现出先缓慢增强、后迅速下降的趋势。换言之,对于给定的接触刚度,摩擦系数存在一个与之匹配的最佳取值范围以及允许的最大取值;当摩擦系数超过这一最大取值后,碰摩作用将引发系统的低频碰撞或全周碰摩等失稳行为。而随着接触刚度的增大,摩擦系数允许取值的范围将越来越狭窄。另外,接触参数对碰摩的影响也受到系统阻尼系数的制约。计算结果表明,通过优化碰摩时的摩擦副材料,进而优化转子轴颈与保护轴承内圈之间的接触参数,是增强飞轮系统稳定性的一种可行方案。

关键词: 储能飞轮, 转子系统碰摩, 接触参数, 系统稳定性

Abstract:

High-speed rotating flywheel rotors for energy storage are key devices of flywheel energy storage technology (FEST). Under normal operating conditions, the flywheel rotor runs stably in the radial gap between the rotor journal and the protective bearing to support the active magnetic suspension bearings at both ends. When the rotor is disturbed (based on several factors) and deviates from a stable trajectory, its journal may collide with the inner ring of the protective bearing, which may cause system instability. Therefore, it is necessary to study the disturbance energy dissipation and the rubbing behavior's influence on the system stability during the rubbing process and subsequently provide a basis for optimizing the system's contact parameters and system stability. In this paper, a set of dynamic equations describing the rubbing process of the flywheel system is established using the two-degrees-of-freedom spring-damping system model, which considers friction after simplification. The fourth-order Runge-Kutta direct integration method was used to numerically solve the system's rubbing behaviors under different contact parameters. The results showed that, within the range of actual contact stiffness, the stability of the rotor system always indicated the trend of first strengthening slowly and then decreasing rapidly with an increase in the friction coefficient. For a given contact stiffness, there was a matching optimal value range and a maximum allowable value for the friction coefficient. Once the friction coefficient exceeded this maximum value, the rubbing effect caused instability behaviors in the flywheel system, such as low-frequency continuous collision or rubbing against the entire circumference. As the contact stiffness increased, the allowable value range of the friction coefficient continued to become narrower. The damping coefficient of the system also restricted the contact parameters' influence on the rubbing process. The calculation results highlighted a feasible solution as enhancing the stability of the flywheel system by optimizing the material of the friction pair during rubbing, as well as the contact parameters between the rotor journal and the inner ring of the protective bearing.

Key words: FEST, rubbing, contact parameter, system stability

中图分类号: