储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1503-1513.doi: 10.19799/j.cnki.2095-4239.2021.0235

• 物理储能十年专刊·压缩空气 • 上一篇    下一篇

喷射器强化压缩空气储能充能过程

周升辉1(), 何阳1, 陈海生2, 徐玉杰2, 邓建强1()   

  1. 1.西安交通大学,陕西 西安 710049
    2.中国科学院工程热物理研究所,北京 100190
  • 收稿日期:2021-05-29 修回日期:2021-07-03 出版日期:2021-09-05 发布日期:2021-09-08
  • 通讯作者: 邓建强 E-mail:zhoushenghui8019@stu.xjtu.edu.cn;dengjq@xjtu.edu.cn
  • 作者简介:周升辉(1994—),女,博士研究生,研究方向为压缩空气储能系统优化,E-mail:zhoushenghui8019@stu.xjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0903602)

Using an ejector to intensify the charging process of a compressed air energy storage system

Shenghui ZHOU1(), Yang HE1, Haisheng CHEN2, Yujie XU2, Jianqiang DENG1()   

  1. 1.Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    2.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-05-29 Revised:2021-07-03 Online:2021-09-05 Published:2021-09-08
  • Contact: Jianqiang DENG E-mail:zhoushenghui8019@stu.xjtu.edu.cn;dengjq@xjtu.edu.cn

摘要:

喷射器可应用于绝热压缩空气储能系统去强化充能过程和提高系统性能,其喷射器利用压缩机出口的高压空气作主动流,以环境空气或前一级压缩机出口的低压空气作引射流。喷射器的使用可提高储气速率和减少节流阀的热力学损失。本文分别对多喷射器和单喷射器强化充能过程的储能系统展开研究,并建立了两种储能系统的热动力学模型。模拟结果表明:两种储能系统均提高了系统循环效率,与绝热压缩空气储能系统定压运行模式相比,多喷射器储能定压运行模式和单喷射器储能滑压运行模拟的系统循环效率分别最大提高了2.34%和2.73%。对于多喷射器储能系统,喷射器工作时间和引射环境空气的累积质量均随引射比的增加而减小,当初始储气压力较低、引射比较小和加热/冷却器换热温差较小时,更有利于系统循环效率的提高。对于单喷射器储能系统,与绝热压缩空气储能系统滑压运行模式相比,当初始储气压力相同时,该系统具有更大堵塞裕度,且堵塞裕度随引射比减小而增大;与绝热压缩空气储能系统定压模式相比,该系统的系统循环效率的增大量随引射比和初始储气压力的增大而增大。研究结果为压缩空气储能系统的进一步优化提供了参考。

关键词: 喷射器, 压缩空气储能系统, 在储能过程, 系统性能, 引射比, 系统循环效率

Abstract:

An ejector can be applied in an adiabatic compressed air energy storage (A-CAES) system to intensify the charging process and improve its overall system performance. In this instance, the ejector will employ high-pressure air from the outlet of a compressor and use it as a primary fluid for entraining low-pressure air from ambient or outlet of earlier stage compressor. The use of an ejector can increase air charging speed and reduce thermodynamic loss of the throttle valve. In this work, the presence of a multiple ejector A-CAES (MEA-CAES) and a single ejector A-CAES (SEA-CAES) in the charging process was researched, respectively, and thermodynamic models of the two systems were constructed. The simulation results showed improved round-trip efficiency of an MEA-CAES under a constant-pressure operation mode and a SEA-CAES under a sliding-pressure operation mode compared with an A-CAES with a constant-pressure operation mode; the maximum increase of the two systems was 2.34%, and 2.73%, respectively. For the MEA-CAES, the work-time of ejectors and the cumulative mass of the ambient air entrained by ejectors both decreased when the entrainment ratio increased. The improvement in the round-trip efficiency of the MEA-CAES was larger in the lower initial storage pressure. It reflected a smaller entrainment ratio and a smaller heat-transfer temperature difference in the heating/cooling exchangers condition. At a fixed initial storage pressure, the SEA-CAES jam margin was larger than the A-CAES when using a sliding-pressure operational mode, and the jam margin decreased when the entrainment ratio increased. The improvement of round-trip efficiency for the SEA-CAES was larger in the higher initial storage pressure and the larger entrainment ratio condition. The study results provide a reference for the further optimization of compressed air energy storage.

Key words: ejectors, compressed air energy storage, in charging process, system performance, entrainment ratio, roundtrip efficiency

中图分类号: