1 |
刘泽元, 王友仁, 陈则王, 等. 基于改进EKF的飞机蓄电池在线SOC估计方法[J]. 电子测量技术, 2015, 38(7): 119-123.
|
|
LIU Z Y, WANG Y R, CHEN Z W, et al. Method of aircraft battery on-line SOC estimation based on improved EKF algorithm[J]. Electronic Measurement Technology, 2015, 38(7): 119-123.
|
2 |
雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报, 2020, 41(12): 324048.
|
|
LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324048.
|
3 |
GISMERO A, SCHALTZ E, STROE D I. Recursive state of charge and state of health estimation method for lithium-ion batteries based on coulomb counting and open circuit voltage[J]. Energies, 2020, 13(7): 1811.
|
4 |
苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
5 |
盛瀚民, 肖建, 贾俊波, 等. 最小二乘支持向量机荷电状态估计方法[J]. 太阳能学报, 2015, 36(6): 1453-1458.
|
|
SHENG H M, XIAO J, JIA J B, et al. Estimation method for state of charge based on least square support vector machine[J]. Acta Energiae Solaris Sinica, 2015, 36(6): 1453-1458.
|
6 |
KIM M J, CHAE S H, MOON Y K. Adaptive battery state-of-charge estimation method for electric vehicle battery management system[C]// 2020 International SoC Design Conference (ISOCC). IEEE, 2020: 288-289.
|
7 |
吕佳志. 基于改进粒子滤波的非线性系统故障诊断[J]. 机械制造与自动化, 2019, 48(4): 183-187.
|
|
LÜ J Z. Fault diagnosis of nonlinear systems based on improved particle filter[J]. Machine Building & Automation, 2019, 48(4): 183-187.
|
8 |
徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960.
|
|
XU C, LI L W, YANG Y X, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960.
|
9 |
华宇宁, 崔春娜. 一种基于粒子滤波的红外多目标跟踪算法[J]. 沈阳理工大学学报, 2017, 36(1): 66-70.
|
|
HUA Y N, CUI C N. Infrared multi-target tracking algorithm based on particle filter[J]. Journal of Shenyang Ligong University, 2017, 36(1): 66-70.
|
10 |
朱超, 刘以安, 薛松. 基于混沌的萤火虫改进粒子滤波算法研究[J]. 传感器与微系统, 2017, 36(9): 106-109.
|
|
ZHU C, LIU Y A, XUE S. Research of improved particle filtering algorithm for fireflies based on chaos[J]. Transducer and Microsystem Technologies, 2017, 36(9): 106-109.
|
11 |
姬鹏, 徐硕硕, 赵一凡, 等. 改进粒子滤波算法的车辆状态估计研究[J]. 机械设计与制造, 2020(2): 43-46, 50.
|
|
JI P, XU S S, ZHAO Y F, et al. Research on vehicle state estimation based on improved particle filter algorithm[J]. Machinery Design & Manufacture, 2020(2): 43-46, 50.
|
12 |
张威虎, 郭明香, 贺元恺, 等. 一种改进的蝴蝶算法优化粒子滤波算法[J]. 西安科技大学学报, 2019, 39(1): 119-123.
|
|
ZHANG W H, GUO M X, HE Y K, et al. An improved butterfly algorithm optimizing particle filter algorithm[J]. Journal of Xi'an University of Science and Technology, 2019, 39(1): 119-123.
|
13 |
郭向伟, 司阳, 高岩, 等. 动力锂电池最优等效电路模型研究[J]. 电子测量与仪器学报, 2021, 35(1): 48-55.
|
|
GUO X W, SI Y, GAO Y, et al. Research on the optimal equivalent circuit model of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 48-55.
|
14 |
李奇, 王晓锋, 孟翔, 等. 基于在线辨识和极小值原理的PEMFC混合动力系统综合能量管理方法[J]. 中国电机工程学报, 2020, 40(21): 6991-7002.
|
|
LI Q, WANG X F, MENG X, et al. Comprehensive energy management method of PEMFC hybrid power system based on online identification and minimal principle[J]. Proceedings of the CSEE, 2020, 40(21): 6991-7002.
|
15 |
陈德海, 王超, 朱正坤, 等. 交互多模型无迹卡尔曼滤波算法预测锂电池SOC[J]. 储能科学与技术, 2020, 9(1): 257-265.
|
|
CHEN D H, WANG C, ZHU Z K, et al. Lithium battery state-of-charge estimation based on interactive multimodel unscented Kalman filter Algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265.
|
16 |
杨晓敏. 改进灰狼算法优化支持向量机的网络流量预测[J]. 电子测量与仪器学报, 2021, 35(3): 211-217.
|
|
YANG X M. Improved gray wolf algorithm to optimize support vector machine for network traffic prediction[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(3): 211-217.
|