1 |
明彤彤, 王凯, 田冬冬, 等. 基于LSTM神经网络的锂离子电池荷电状态估算[J]. 广东电力, 2020, 33(3): 26-33.
|
|
MING Tongtong, WANG Kai, TIAN Dongdong, et al. Estimation on state of charge of lithium battery based on LSTM neural network[J]. Guangdong Electric Power, 2020, 33(3): 26-33.
|
2 |
徐艳民, 李剑勇. 基于改进无迹卡尔曼滤波的电池SOC估计[J]. 汽车技术, 2018(4): 47-51.
|
|
XU Yanmin, LI Jianyong. Estimation of SOC of battery based on improved unscented Kalman filter[J]. Automobile Technology, 2018(4): 47-51.
|
3 |
谈发明, 李秋烨, 赵俊杰. 观测模型误差不确定的锂电池SOC估计方法[J]. 电测与仪表, 2020, 57(3): 32-38.
|
|
TAN Faming, LI Qiuye, ZHAO Junjie. Research on SOC estimation method for lithium batteries with uncertain model errors[J]. Electrical Measurement & Instrumentation, 2020, 57(3): 32-38.
|
4 |
SUN Yong, MA Zilin, TANG Gongyou, et al. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter[J]. Chinese Journal of Construction Machinery, 2016, 29(4): 717-726.
|
5 |
高建树, 刘浩, 王明强, 等. 改进粒子滤波算法对电动汽车电池SOC的估计[J]. 机械科学与技术, 2017, 36(9): 1428-1433.
|
|
GAO Jianshu, LIU Hao, WANG Mingqiang, et al. An improved particle filter algorithm for SOC estimation of electric vehicle battery[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1428-1433.
|
6 |
吴兰花, 杨秀芝, 郑明魁, 等. 一种基于优化粒子滤波的锂电池SOC估计算法[J]. 福州大学学报(自然科学版), 2018, 46(2): 186-191.
|
|
WU Lanhua, YANG Xiuzhi, ZHENG Mingkui, et al. An improved particle filter algorithm for Li-ion batteries SOC estimation[J]. Journal of Fuzhou University(Natural Science Edition), 2018, 46(2): 186-191.
|
7 |
ZHANG H, FRANSSEN H J H, HAN X, et al. State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4927-4958.
|
8 |
MICHEAUX H L, DUCOTTET C, FREY P. Multi-model particle filter-based tracking with switching dynamical state to study bedload transport[J]. Machine Vision & Applications, 2018(2): 1-13.
|
9 |
YU Jinsong, MO Baohua,TANG Diyin, et al. Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter[J]. Quality Engineering, 2017, 29(3): 536-546.
|
10 |
樊波, 栾新宇, 张瑞, 等. 基于改进PNGV模型的电池SOC估计算法研究[J]. 电测与仪表, 2018, 55(20): 46-51.
|
|
FAN Bo, LUAN Xinyu, ZHANG Rui, et al. Research on battery SOC estimation algorithm based on the improved PNGV model[J]. Electrical Measurement & Instrumentation, 2018, 55(20): 46-51.
|
11 |
于微波, 魏来, 杨听听, 等. 基于自适应卡尔曼滤波的矿用救生舱动力电池SOC估计[J]. 电测与仪表, 2016, 53(18): 118-123.
|
|
YU Weibo, WEI Lai, YANG Tingting, etal. SOC estimation of power battery in mine-used lifesaving cabinbased on self-adaptive Kalman filtering[J]. Electrical Measurement & Instrumentation, 2016, 53(18): 118-123.
|
12 |
李俊瑶. 基于模糊粒子滤波器的夜间车辆目标识别[J]. 现代计算机, 2018(34): 25-28.
|
|
LI Junyao. The object recognition of night vehicles based on the fuzzy particle filter[J]. Modern Computer, 2018(34): 25-28.
|
13 |
PEREZ J, VALDEZ F, CASTILLO O, et al. Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm[J]. Soft Computing, 2016, 21(3): 1-19.
|
14 |
赵又群, 周晓凤, 刘英杰. 基于扩展卡尔曼粒子滤波算法的锂电池SOC估计[J]. 中国机械工程, 2015, 26(3): 394-397.
|
|
ZHAO Youqun, ZHOU Xiaofeng, LIU Yingjie. SOC estimation for Li-ion battery based on extended kalman particle filter[J]. China Mechanical Engineering, 2015, 26(3): 394-397.
|
15 |
许德刚, 赵萍. 蝙蝠算法研究及应用综述[J]. 计算机工程与应用, 2019, 55(15): 1-12, 31.
|
|
XU Degang, ZHAO Ping. Literature survey on research and application of bat algorith[J]. Computer Engineering and Applications, 2019, 55(15): 1-12, 31.
|
16 |
江方利, 黄炜斌, 李基栋, 等. 基于改进蝙蝠算法的梯级水电站经济调度[J]. 工程科学与技术, 2018, 50(2): 84-90.
|
|
JIANG Fangli, HUANG Weibin, LI Jidong, et al. Improved bat algorithm for economic dispatch in cascade hydropower stations[J]. Journal of Sichuan University(Engineering Science Edition), 2018, 50(2): 84-90.
|
17 |
曹洁, 杜永红, 王进花. 自适应蝙蝠算法优化PF的风力机桨距系统故障诊断方法[J]. 计算机应用与软件, 2018, 35(5): 78-84.
|
|
CAO Jie, DU Yonghong, WANG Jinhua. Fault diagnosis method for pitch system of wind turbines based on adaptive bat Algorithm optimized PF[J]. Computer Applications and Software, 2018, 35(5): 78-84.
|
18 |
YAN Wuzhao, ZHANG Bin, ZHAO Guangquan, et al. A battery management system with a lebesgue-sampling-based extended kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227-3236.
|
19 |
陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报, 2017, 66(5): 32-42.
|
|
CHEN Zhimin, TIAN Mengchu, WU Panlong, et al. Intelligent particle filter based on bat algorithm[J]. Acta Physica Sinica, 2017, 66(5): 32-42.
|
20 |
陈志敏, 吴盘龙, 薄煜明, 等. 基于自控蝙蝠算法智能优化粒子滤波的机动目标跟踪方法[J]. 电子学报, 2018, 46(4): 886-894.
|
|
CHEN Zhimin, WU Panlong, BO Yuming, et al. Adaptive control bat algorithm intelligent optimization particle filter for maneuvering target tracking[J]. Acta Electronica Sinica, 2018, 46(4): 886-894.
|
21 |
滕飞, 薛磊, 李修和. 基于KLD的蝙蝠算法优化自适应粒子滤波[J]. 控制与决策, 2019, 34(3): 561-566.
|
|
TENG Fei, XUE Lei, LI Xiuhe. Adaptive particl filter with bat optimization based on KLD sampling[J]. Control and Decision, 2019, 34(3): 561-566.
|