储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3268-3274.doi: 10.19799/j.cnki.2095-4239.2021.0573

• 储能系统与工程 • 上一篇    下一篇

提升光伏消纳的分布式储能系统控制方法

曾伟1(), 熊俊杰1, 马速良2, 谭宇良2, 李建林2   

  1. 1.国网江西省电力有限公司电力科学研究院,江西 南昌 330096
    2.储能技术工程研究中心 (北方工业大学),北京 100144
  • 收稿日期:2021-10-29 修回日期:2022-01-04 出版日期:2022-10-05 发布日期:2022-10-10
  • 通讯作者: 曾伟 E-mail:ZEJXDKY@163.com
  • 作者简介:曾伟(1979—),男,博士,高级工程师,主要研究方向为新能源及储能技术,E-mail:ZEJXDKY@163.com
  • 基金资助:
    国网江西省电力有限公司科技项目(52182020008K)

Research on control method of distributed energy storage system to improve photovoltaic consumption

Wei ZENG1(), Junjie XIONG1, Suliang MA2, Yuliang TAN2, Jianlin LI2   

  1. 1.State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, Jiangxi, China
    2.Energy Storage Technology Engineering Research Center (North China University of Technology), Beijing 100144, China
  • Received:2021-10-29 Revised:2022-01-04 Online:2022-10-05 Published:2022-10-10
  • Contact: Wei ZENG E-mail:ZEJXDKY@163.com

摘要:

分布式储能具有分散灵活等特点,多分布式储能协同配合可以解决单一储能调节能力差、范围小的问题,可以进一步提高新能源消纳能力。提高新能源利用率。本工作通过建立一个光伏电站、两个分布式储能系统模型,并通过分析光伏电站出力,利用储能系统跟踪光伏出力的特点建立以分布式储能系统出力最小为目标的目标函数,结合发电系统的功率平衡要求、分布式储能系统的电池能量状态(state of energy,SOE)约束、分布式储能系统功率和容量约束,采用线性递减惯性权重粒子群优化算法,旨在在已有的约束条件下,寻求分布式储能系统的最佳效率。通过仿真分析该方法可以提高光伏消纳能力,减少储能系统动作次数,进一步增加储能系统的寿命。

关键词: 分布式储能, 储能出力, 功率平衡, 线性递减惯性权重粒子群优化算法

Abstract:

The features of distributed energy storage are decentralization and flexibility, and the coordination of multiple distributed energy storage can address the problem of single energy storage's poor adjustment ability and limited range, as well as boost the capacity of new energy consumption and increase the pace of new energy use. This research establishes a photovoltaic power station, two distributed energy storage system models, examines the output of the photovoltaic power station, and uses the features of the energy storage system to track the photovoltaic output to develop an objective function with the minimum output of the dispersed energy storage system as the goal, combined with the power generation system. The linearly decreasing inertia weight particle swarm optimization algorithm is used to target the existing constraints and the distributed energy storage system's power balance requirements, state of energy constraints, power, and capacity constraints. Next, determine the most effective distributed energy storage system. Through simulation analysis, this method can improve the photovoltaic absorption capacity, reduce the number of actions of the energy storage system, and further increase the life of the energy storage system.

Key words: distributed energy storage, energy storage output, power balance, linearly decreasing inertia weight particle swarm optimization algorithm

中图分类号: