1 |
LEE W, MUHAMMAD S, KIM T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Advanced Energy Materials, 2018, 8(4): doi: 10.1002aenm.201701788.
|
2 |
张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061.
|
|
ZHANG L Q, TANG Y F, LIU Q N, et al. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061.
|
3 |
葛昊, 李哲, 张剑波. 锂离子电池开路电压曲线形状与多阶段容量损失[J]. 储能科学与技术, 2019, 8(6): 1089-1095.
|
|
GE H, LI Z, ZHANG J B. Multi-stage capacity loss of lithium-ion batteries originating from the multi-slope nature of open circuit voltage curves[J]. Energy Storage Science and Technology, 2019, 8(6): 1089-1095.
|
4 |
樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049.
|
|
FAN Y P, YAN L Q, JIAN D C, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049.
|
5 |
张杰男, 汪君洋, 吕迎春, 等. 锂电池研究中的X射线多晶衍射实验与分析方法综述[J]. 储能科学与技术, 2019, 8(3): 443-467.
|
|
ZHANG J N, WANG J Y, LYU Y C, et al. Experimental measurement and analysis methods of polycrystalline X-ray diffraction for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 443-467.
|
6 |
陈晓轩, 李晟, 胡泳钢, 等. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016.
|
|
CHEN X X, LI S, HU Y G, et al. Failure mechanism of Li1+ x(NCM)1- xO2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016.
|
7 |
AURBACH D. Electrode-solution interactions in Li-ion batteries: A short summary and new insights[J]. Journal of Power Sources, 2003, 119/120/121: 497-503.
|
8 |
BIANCHINI M, ROCA-AYATS M, HARTMANN P, et al. There and back again-the journey of LiNiO2 as a cathode active material[J]. Angewandte Chemie, 2019, 58(31): 10434-10458.
|
9 |
XU Z R, RAHMAN M M, MU L Q, et al. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(44): 21859-21884.
|
10 |
李守涛, 孟庆函, 阮一钊, 等. Li(Ni1/3Co1/3Mn1/3)O2/graphite电池在备用电源工况下的交流阻抗[J]. 储能科学与技术, 2019, 8(6): 1171-1175.
|
|
LI S T, MENG Q H, RUAN Y Z, et al. AC impedance of Li(Ni1/3co1/3Mn1/3)o2/graphite cell as UPS[J]. Energy Storage Science and Technology, 2019, 8(6): 1171-1175.
|
11 |
孔令丽, 张克军, 夏晓萌, 等. 高电压锂离子电池高温浮充性能影响因素分析与改善[J]. 储能科学与技术, 2019, 8(6): 1165-1170.
|
|
KONG L L, ZHANG K J, XIA X M, et al. Analysis and improvement of high temperature floating charge performance for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170.
|
12 |
拱越, 谷林. 锂离子电池材料的电子显微学分析方法[J]. 储能科学与技术, 2019, 8(6): 1260-1270.
|
|
GONG Y, GU L. Transmission electron microscopy of lithium ion battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1260-1270.
|
13 |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039.
|
14 |
任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966.
|
|
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966.
|
15 |
冯小龙, 杨乐, 张明亮, 等. 锂离子电池内部力学与温度参量在位表征方法[J]. 储能科学与技术, 2019, 8(6): 1062-1075.
|
|
FENG X L, YANG L, ZHANG M L, et al. Failure mechanics inner lithium ion batteries: In-situ multi-field experimental methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1062-1075.
|
16 |
KIM U H, KIM J H, HWANG J Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Materials Today, 2019, 23: 26-36.
|
17 |
耿福山, 胡炳文. 锂离子电池中重要正极材料体系的磁共振研究进展[J]. 储能科学与技术, 2019, 8(6): 1017-1023.
|
|
GENG F S, HU B W. Progress in magnetic resonance research of important cathode materials in lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1017-1023.
|
18 |
许高洁, 王晓, 陆迪, 等. 锂离子电池高安全性阻燃电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 1040-1059.
|
|
XU G J, WANG X, LU D, et al. Research progress of high safety flame retardant electrolytes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1040-1059.
|
19 |
WANG D Y, WU X D, WANG Z X, et al. Cracking causing cyclic instability of LiFePO4 cathode material[J]. Journal of Power Sources, 2005, 140(1): 125-128.
|
20 |
BI Y J, YANG W C, DU R, et al. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery[J]. Journal of Power Sources, 2015, 283: 211-218.
|
21 |
FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91.
|
22 |
JIANG L H, WANG Q S, SUN J H. Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte[J]. Journal of Hazardous Materials, 2018, 351: 260-269.
|
23 |
XU J, HU E Y, NORDLUND D, et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31677-31683.
|
24 |
REN Z M, ZHANG X H, LIU M, et al. Constant dripping wears away a stone: Fatigue damage causing particles' cracking[J]. Journal of Power Sources, 2019, 416: 104-110.
|
25 |
YIN S Y, DENG W T, CHEN J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy, 2021, 83: doi: 10.1016/j.nanoen. 2021.105854.
|
26 |
ZHANG X H, CHEN Z L, SCHWARZ B, et al. Kinetic characteristics up to 4.8 V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries[J]. Electrochimica Acta, 2017, 227: 152-161.
|
27 |
RYU H H, PARK K J, YOON D R, et al. Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability[J]. Advanced Energy Materials, 2019, 9(44): doi: 10.1002/aenm. 201902698.
|
28 |
LIU M, REN Z M, WANG D Y, et al. Addressing unfavorable influence of particle cracking with a strengthened shell layer in Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18954-18960.
|