储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 818-833.doi: 10.19799/j.cnki.2095-4239.2021.0713

• 储能新材料设计与先进表征专刊 • 上一篇    下一篇

储能科学中的磁性表征技术

赵志强1,2(), 刘恒均1,2, 徐熙祥1,2, 潘圆圆1,2, 李庆浩1, 李洪森1, 胡涵3, 李强1,2()   

  1. 1.青岛大学物理科学学院,山东 青岛 266071
    2.青岛大学威海创新研究院,山东 威海 264299
    3.中国石油大学(华东)化学工程学院,山东 青岛 266580
  • 收稿日期:2021-12-28 修回日期:2022-01-14 出版日期:2022-03-05 发布日期:2022-03-11
  • 通讯作者: 李强 E-mail:2021020313@qdu.edu.cn;liqiang@qdu.edu.cn
  • 作者简介:赵志强(1997—),男,硕士研究生,主要研究方向为磁电化学,E-mail:2021020313@qdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22179066);山东省自然科学基金项目(ZR2020MA073)

Magnetometry technique in energy storage science

Zhiqiang ZHAO1,2(), Hengjun LIU1,2, Xixiang XU1,2, Yuanyuan PAN1,2, Qinghao LI1, Hongsen LI1, Han HU3, Qiang LI1,2()   

  1. 1.College of Physics, Qingdao University, Qingdao 266071, Shandong, China
    2.Weihai Innovation Research Institute, Qingdao University, Weihai 264299, Shandong, China
    3.College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Received:2021-12-28 Revised:2022-01-14 Online:2022-03-05 Published:2022-03-11
  • Contact: Qiang LI E-mail:2021020313@qdu.edu.cn;liqiang@qdu.edu.cn

摘要:

理解电化学储能系统的构效关系将极大推动电极材料中新现象和新性能的发现与调控。然而,没有任何一种单一技术可以澄清电化学体系中复杂界面反应的所有问题,只有从多个角度进行观察才能看清被埋藏的界面和工作状态下的演变历程。由于大量储能材料富含过渡金属元素,其磁学性质与晶格结构、电子能带、电化学性能密切相关。因此,磁学测试分析可以揭示能源材料中的结构相变和局部电子分布等变化,解析物理化学反应机理,指导材料设计。围绕磁性表征技术,本文首先讨论了磁性测试的技术原理,随后总结介绍了磁性测试在研究电极材料物性结构表征以及电化学反应进程方面的研究进展,尤其介绍了原位实时磁性测试在阐明储能物理化学反应机理方面的独特优势。综合分析表明,原位磁性表征技术可以对电化学反应中的电荷转移进行高灵敏度、快速响应的测试表征,为揭示复杂界面电化学反应提供了新思路,在储能科学中具有广阔的应用前景。本文有助于了解磁性测试技术在电化学储能材料研究中的重要价值,并进一步推动磁性测试技术在储能领域的发展。

关键词: 储能科学, 原位磁性测试, 锂离子电池, 钠离子电池, 磁电化学

Abstract:

Understanding the structure-activity relationship of electrochemical energy storage system will greatly promote the discovery and regulation of new phenomena and new properties in electrode materials. However, no single technology can clarify all the problems of complex interface reactions in the electrochemical system. Only by observing from multiple perspectives can we see the buried interface and the evolution process under working conditions. Many energy storage materials are rich in transition metal elements, and their magnetic properties are closely related to lattice structure, electronic energy band and electrochemical performance. Therefore, magnetometry can reveal structural phase transition and local electron distribution changes of energy materials, analyze the mechanism of physical and chemical reactions, and guide material design. Focusing on magnetic characterization technology for energy storage, this paper firstly discusses the technical principle of magnetometry, and then summarizes the research progress of magnetometry in studying the structural characteristics of electrode materials and characterizing the reaction process, especially introduces the unique advantages of in-situ magnetometry in monitoring the magnetic changes in real time and illustrating the reaction mechanism. Comprehensive analysis shows that in-situ magnetometry technology can characterize the charge transfer in electrochemical reactions with high sensitivity and rapid response, which provides a new idea for revealing the electrochemical reactions at complex interfaces and has broad application prospects in energy storage science. This paper is helpful to understand the important value of magnetometry technique in the research of battery materials and further promote the development of magnetometry technique in the field of energy storage.

Key words: energy storage science, operando magnetometry, Li-ion battery, sodium-ion battery, magnetoelectrochemistry

中图分类号: