储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 818-833.doi: 10.19799/j.cnki.2095-4239.2021.0713
赵志强1,2(), 刘恒均1,2, 徐熙祥1,2, 潘圆圆1,2, 李庆浩1, 李洪森1, 胡涵3, 李强1,2()
收稿日期:
2021-12-28
修回日期:
2022-01-14
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
李强
E-mail:2021020313@qdu.edu.cn;liqiang@qdu.edu.cn
作者简介:
赵志强(1997—),男,硕士研究生,主要研究方向为磁电化学,E-mail:基金资助:
Zhiqiang ZHAO1,2(), Hengjun LIU1,2, Xixiang XU1,2, Yuanyuan PAN1,2, Qinghao LI1, Hongsen LI1, Han HU3, Qiang LI1,2()
Received:
2021-12-28
Revised:
2022-01-14
Online:
2022-03-05
Published:
2022-03-11
Contact:
Qiang LI
E-mail:2021020313@qdu.edu.cn;liqiang@qdu.edu.cn
摘要:
理解电化学储能系统的构效关系将极大推动电极材料中新现象和新性能的发现与调控。然而,没有任何一种单一技术可以澄清电化学体系中复杂界面反应的所有问题,只有从多个角度进行观察才能看清被埋藏的界面和工作状态下的演变历程。由于大量储能材料富含过渡金属元素,其磁学性质与晶格结构、电子能带、电化学性能密切相关。因此,磁学测试分析可以揭示能源材料中的结构相变和局部电子分布等变化,解析物理化学反应机理,指导材料设计。围绕磁性表征技术,本文首先讨论了磁性测试的技术原理,随后总结介绍了磁性测试在研究电极材料物性结构表征以及电化学反应进程方面的研究进展,尤其介绍了原位实时磁性测试在阐明储能物理化学反应机理方面的独特优势。综合分析表明,原位磁性表征技术可以对电化学反应中的电荷转移进行高灵敏度、快速响应的测试表征,为揭示复杂界面电化学反应提供了新思路,在储能科学中具有广阔的应用前景。本文有助于了解磁性测试技术在电化学储能材料研究中的重要价值,并进一步推动磁性测试技术在储能领域的发展。
中图分类号:
赵志强, 刘恒均, 徐熙祥, 潘圆圆, 李庆浩, 李洪森, 胡涵, 李强. 储能科学中的磁性表征技术[J]. 储能科学与技术, 2022, 11(3): 818-833.
Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science[J]. Energy Storage Science and Technology, 2022, 11(3): 818-833.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | 张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061. |
ZHANG L Q, TANG Y F, LIU Q N, et al. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061. | |
4 | 柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. | |
5 | CHERNOVA N A, NOLIS G M, OMENYA F O, et al. What can we learn about battery materials from their magnetic properties?[J]. Journal of Materials Chemistry, 2011, 21(27): 9865-9875. |
6 | GOODENOUGH J B, WICKHAM D G, CROFT W J. Some magnetic and crystallographic properties of the system LixNi1-2 xNixO[J]. Journal of Physics and Chemistry of Solids, 1958, 5(1/2): 107-116. |
7 | XIAO J, CHERNOVA N A, WHITTINGHAM M S. Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries[J]. Chemistry of Materials, 2008, 20(24): 7454-7464. |
8 | AIT SALAH A, MAUGER A, ZAGHIB K, et al. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition[J]. Journal of the Electrochemical Society, 2006, 153(9): doi: 10.1149/1.2213527. |
9 | RAVET N, GAUTHIER M, ZAGHIB K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive[J]. Chemistry of Materials, 2007, 19(10): 2595-2602. |
10 | ZAGHIB K, MAUGER A, GOODENOUGH J B, et al. Electronic, optical, and magnetic properties of LiFePO4: Small magnetic polaron effects[J]. Chemistry of Materials, 2007, 19(15): 3740-3747. |
11 | WHITTINGHAM M S, SONG Y N, LUTTA S, et al. Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries[J]. Journal of Materials Chemistry, 2005, 15(33): doi: 10.1039/B501961C. |
12 | ZAGHIB K, RAVET N, GAUTHIER M, et al. Optimized electrochemical performance of LiFePO4 at 60 ℃ with purity controlled by SQUID magnetometry[J]. Journal of Power Sources, 2006, 163(1): 560-566. |
13 | OMENYA F, CHERNOVA N A, UPRETI S, et al. Can vanadium be substituted into LiFePO4?[J]. Chemistry of Materials, 2011, 23(21): 4733-4740. |
14 | UPRETI S, CHERNOVA N A, XIAO J, et al. Crystal structure, physical properties, and electrochemistry of copper substituted LiFePO4 single crystals[J]. Chemistry of Materials, 2012, 24(1): 166-173. |
15 | XIAO J, CHERNOVA N A, UPRETI S, et al. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(40): 18099-18106. |
16 | COEY J M D. Magnetism and magnetic materials[M]. England: Cambridge University Press, 2010. |
17 | 郭贻诚. 铁磁学[M]. 北京: 北京大学出版社, 2014.GUO Y C. Ferromagnetics[M]. Beijing: Peking University Press, 2014. |
18 | 戴道生. 物质磁性基础[M]. 北京: 北京大学出版社, 2016. |
DAI D S.Basics magnetism of matter[M]. Beijing: Peking University Press, 2016. | |
19 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. |
20 | CHERNOVA N A, MA M M, XIAO J, et al. Layered LixNiyMnyCo1-2 yO2 cathodes for lithium ion batteries: Understanding local structure via magnetic properties[J]. Chemistry of Materials, 2007, 19(19): 4682-4693. |
21 | SANTORO R P, NEWNHAM R E. Antiferromagnetism in LiFePO4[J]. Acta Crystallographica, 1967, 22(3): 344-347. |
22 | LI J Y, GARLEA V O, ZARESTKY J L, et al. Spin-waves in antiferromagnetic single-crystal LiFePO4[J]. Physical Review B, 2006, 73(2): doi: 10.1103/PhysRevB.73.024410. |
23 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. |
24 | YANG M R, TENG T H, WU S H. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2006, 159(1): 307-311. |
25 | CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693. |
26 | SALAH A A, MAUGER A, JULIEN C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 232-244. |
27 | AIT-SALAH A, ZAGHIB K, MAUGER A, et al. Magnetic studies of the carbothermal effect on LiFePO4[J]. Physica Status Solidi (A), 2006, 203(1): R1-R3. |
28 | GARDINER G R, ISLAM M S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J]. Chemistry of Materials, 2010, 22(3): 1242-1248. |
29 | MALIK R, BURCH D, BAZANT M, et al. Particle size dependence of the ionic diffusivity[J]. Nano Letters, 2010, 10(10): 4123-4127. |
30 | YANG J J, TSE J S. Li ion diffusion mechanisms in LiFePO4: An ab initio molecular dynamics study[J]. The Journal of Physical Chemistry A, 2011, 115(45): 13045-13049. |
31 | AXMANN P, STINNER C, WOHLFAHRT-MEHRENS M, et al. Nonstoichiometric LiFePO4: Defects and related properties[J]. Chemistry of Materials, 2009, 21(8): 1636-1644. |
32 | WERNER J, NEEF C, KOO C, et al. Antisite disorder in the battery material LiFePO4[J]. Physical Review Materials, 2020, 4(11): doi: 10.1103/PhysRevMaterials.4.115403. |
33 | JIAO S H, REN X D, CAO R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
34 | KANG K, MENG Y S, BRÉGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980. |
35 | MARTHA S K, SCLAR H, SZMUK FRAMOWITZ Z, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. Journal of Power Sources, 2009, 189(1): 248-255. |
36 | ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698. |
37 | THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125. |
38 | CHAPPEL E, NÚÑEZ-REGUEIRO M D, CHOUTEAU G, et al. Low field magnetism and cationic distribution in quasi-stoichiometric Li1- xNi1+ xO2[J]. Solid State Communications, 2001, 119(2): 83-87. |
39 | CHAPPEL E, NÚÑEZ-REGUEIRO M D, DE BRION S, et al. Interlayer magnetic frustration in quasistoichiometric Li1- xNi1+ xO2[J]. Physical Review B, 2002, 66(13): doi: 10.1103/PhysRevB.66.132412. |
40 | NAKAMURA T, YAMADA Y, TABUCHI M. Magnetic and electrochemical studies on Ni2+-substituted Li-Mn spinel oxides[J]. Journal of Applied Physics, 2005, 98(9): doi: 10.1063/1.2128469. |
41 | ABDEL-GHANY A, ZAGHIB K, GENDRON F, et al. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(12): 4092-4100. |
42 | MACNEIL D D, LU Z, DAHN J R. Structure and electrochemistry of Li[NixCo1-2 xMnx]O2 (0≤x≤1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10): doi: 10.1149/1.1505633. |
43 | KOBAYASHI H, SAKAEBE H, KAGEYAMA H, et al. Changes in the structure and physical properties of the solid solution LiNi1- xMnxO2 with variation in its composition[J]. Journal of Materials Chemistry, 2003, 13(3): 590-595. |
44 | LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607. |
45 | ROUSSE G, RODRIGUEZ-CARVAJAL J, PATOUX S, et al. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4[J]. Chemistry of Materials, 2003, 15(21): 4082-4090. |
46 | HU J T, ZENG H, CHEN X, et al. Revealing insights into LixFePO4 nanocrystals with magnetic order at room temperature resulting in trapping of Li ions[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 4794-4799. |
47 | KOPE¢ M, YAMADA A, KOBAYASHI G, et al. Structural and magnetic properties of Lix(MnyFe1- y)PO4 electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 189(2): 1154-1163. |
48 | KÖNTJE M, MEMM M, AXMANN P, et al. Substituted transition metal phospho olivines LiMM'PO4 (M=Mn, M'=Fe, Co, Mg): Optimisation routes for LiMnPO4[J]. Progress in Solid State Chemistry, 2014, 42(4): 106-117. |
49 | CHOI D, XIAO J, CHOI Y J, et al. Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(11): doi: 10.1039/CIEE01501J. |
50 | LIU Y M, GU Y, ZENG H, et al. Role of superexchange interactions on the arrangement of Fe and Mn in LiMnxFe1- xPO4[J]. The Journal of Physical Chemistry C, 2019, 123(27): 17002-17009. |
51 | YAMADA A, HOSOYA M, CHUNG S C, et al. Olivine-type cathodes[J]. Journal of Power Sources, 2003, 119/120/121: 232-238. |
52 | HUANG Y Q, FANG J, OMENYA F, et al. Understanding the stability of MnPO4[J]. Journal of Materials Chemistry A, 2014, 2(32): 12827-12834. |
53 | YAMADA A, TAKEI Y, KOIZUMI H, et al. Electrochemical, magnetic, and structural investigation of the Lix(MnyFe1- y)PO4 olivine phases[J]. Chemistry of Materials, 2006, 18(3): 804-813. |
54 | MOHANTY D, GABRISCH H. Microstructural investigation of LixNi1/3Mn1/3Co1/3O2 (x≤1) and its aged products via magnetic and diffraction study[J]. Journal of Power Sources, 2012, 220: 405-412. |
55 | XIAO Y G, LIU T C, LIU J J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85. |
56 | MIAO P, WANG R, ZHU W M, et al. Revealing magnetic ground state of a layered cathode material by muon spin relaxation and neutron scattering experiments[J]. Applied Physics Letters, 2019, 114(20): doi: 10.1063/1.5096620. |
57 | ZHENG J X, YE Y K, LIU T C, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts of Chemical Research, 2019, 52(8): 2201-2209. |
58 | MOORHEAD-ROSENBERG Z, SHIN D W, CHEMELEWSKI K R, et al. Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements[J]. Applied Physics Letters, 2012, 100(21): doi: 10.1063/1.4722927. |
59 | KLINSER G, TOPOLOVEC S, KREN H, et al. Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging[J]. Applied Physics Letters, 2016, 109(21): doi: 10.1063/1.4968547. |
60 | KLINSER G, TOPOLOVEC S, KREN H, et al. Charging of lithium cobalt oxide battery cathodes studied by means of magnetometry[J]. Solid State Ionics, 2016, 293: 64-71. |
61 | TOPOLOVEC S, KREN H, KLINSER G, et al. Operando magnetometry on LixCoO2 during charging/discharging[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1491-1496. |
62 | WÜRSCHUM R, TOPOLOVEC S, KLINSER G, et al. Defects and charging processes in Li-ion battery cathodes studied by operando magnetometry and positron annihilation[J]. Materials Science Forum, 2016, 879: 2125-2130. |
63 | KLINSER G, STÜCKLER M, KREN H, et al. Charging processes in the cathode LiNi0.6Mn0.2Co0.2O2 as revealed by operando magnetometry[J]. Journal of Power Sources, 2018, 396: 791-795. |
64 | GERSHINSKY G, BAR E, MONCONDUIT L, et al. Operando electron magnetic measurements of Li-ion batteries[J]. Energy & Environmental Science, 2014, 7(6): 2012-2016. |
65 | LI Q, LI H S, XIA Q T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83. |
66 | LI H S, HU Z Q, XIA Q T, et al. Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries[J]. Advanced Materials, 2021, 33(12): doi: 10.1002/adma.202006629. |
67 | KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. |
68 | LARUELLE S, GRUGEON S, POIZOT P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society, 2002, 149(5): doi: 10.1149/1.1467947. |
69 | JAMNIK J, MAIER J. Nanocrystallinity effects in lithium battery materials[J]. Physical Chemistry Chemical Physics, 2003, 5(23): doi: 10.1039/B309130A. |
70 | ZHUKOVSKII Y F, BALAYA P, KOTOMIN E A, et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations[J]. Physical Review Letters, 2006, 96(5): doi: 10.1103/PhysRevLett.96.058302. |
71 | MAIER J. Mass storage in space charge regions of nano-sized systems: (Nano-ionics. Part V)[J]. Faraday Discuss, 2007, 134: 51-66. |
72 | FU L J, CHEN C C, MAIER J. Interfacial mass storage in nanocomposites[J]. Solid State Ionics, 2018, 318: 54-59. |
73 | HU Y Y, LIU Z, NAM K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials, 2013, 12(12): 1130-1136. |
74 | ZHANG W, BOCK D C, PELLICCIONE C J, et al. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions[J]. Advanced Energy Materials, 2016, 6(10): doi: 10.1002/aenm.201502471. |
75 | KOMABA S, MIKUMO T, YABUUCHI N, et al. Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α-Fe2O3 for rechargeable batteries[J]. Journal of the Electrochemical Society, 2010, 157(1): doi: 10.1149/1.3254160. |
76 | DUAN C G, VELEV J P, SABIRIANOV R F, et al. Surface magnetoelectric effect in ferromagnetic metal films[J]. Physical Review Letters, 2008, 101(13): doi: 10.1103/PhysRevLett.101.137201.137201. |
77 | HJORTSTAM O, TRYGG J, WILLS J M, et al. Metals Fe, Co, and Ni and their overlayers on Cu(001)[J]. Physical Review B, 1996, 53(14): 9204-9213. |
78 | GRUGEON S, LARUELLE S, DUPONT L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid State Sciences, 2003, 5(6): 895-904. |
79 | LI X K, LI Z H, LIU Y, et al. Transition metal catalysis in lithium-ion batteries studied by operando magnetometry[J]. Chinese Journal of Catalysis, 2022, 43(1): 158-166. |
80 | HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201700606. |
81 | WANG H G, YUAN S, MA D L, et al. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance[J]. Energy & Environmental Science, 2015, 8(6): 1660-1681. |
82 | LI Z H, ZHANG Y C, LI X K, et al. Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry[J]. Journal of the American Chemical Society, 2021, 143(32): 12800-12808. |
83 | SON S B, YERSAK T A, PIPER D M, et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte[J]. Advanced Energy Materials, 2014, 4(3): doi: 10.1002/aenm.201300961. |
84 | XU X, CAI T W, MENG Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery[J]. Journal of Power Sources, 2016, 331: 366-372. |
85 | WANG H Z, ZHAO L Y, ZHANG H, et al. Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe2 cathode for aluminium-ion batteries by in situ magnetometry[J]. Energy & Environmental Science, 2022, 15(1): 311-319. |
86 | ZHANG F L, LI Z H, XIA Q T, et al. Li-ionic control of magnetism through spin capacitance and conversion[J]. Matter, 2021, 4(11): 3605-3620. |
87 | 黄杰, 凌仕刚, 王雪龙, 等. 锂离子电池基础科学问题(XIV)——计算方法[J]. 储能科学与技术, 2015, 4(2): 215-230. |
HUANG J, LING S G, WANG X L, et al. Fundamental scientific aspects of lithium ion batteries(XIV)—Calculation methods[J]. Energy Storage Science and Technology, 2015, 4(2): 215-230. | |
88 | 王达, 周航, 焦遥, 等. 离子嵌入电化学反应机理的理解及性能预测: 从晶体场理论到配位场理论[J]. 储能科学与技术, 2022,11(2): 409-433. |
WANG D, ZHOU H, JIAO Y, et al. The understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory[J]. Energy Storage Science and Technology, 2022,11(2): 409-433. | |
89 | 耿福山, 胡炳文. 锂离子电池中重要正极材料体系的磁共振研究进展[J]. 储能科学与技术, 2019, 8(6): 1017-1023. |
GENG F S, HU B W. Progress in magnetic resonance research of important cathode materials in lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1017-1023. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[6] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[12] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[13] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[14] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[15] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||