储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 795-817.doi: 10.19799/j.cnki.2095-4239.2021.0712

• 储能新材料设计与先进表征专刊 • 上一篇    下一篇

电池电极过程可视化与定量化技术的研究进展

吕思奇1(), 李娜1, 陈浩森1, 焦树强1,2, 宋维力1()   

  1. 1.北京理工大学先进结构技术研究院,北京 100081
    2.北京科技大学先进冶金国家重点实验室,北京 100083
  • 收稿日期:2021-12-28 修回日期:2022-01-18 出版日期:2022-03-05 发布日期:2022-03-11
  • 通讯作者: 宋维力 E-mail:siqi_Lv@163.com;weilis@bit.edu.cn
  • 作者简介:吕思奇(1996—),男,硕士研究生,研究方向为锂离子电池内部气体演化机理与动力学过程,E-mail:siqi_Lv@163.com
  • 基金资助:
    国家自然科学基金项目(52074036);北京理工大学科技创新计划项目(2019CX01021);北京理工大学“特立青年学者”人才支持计划

Progresses in visualization and quantitative analysis of the electrode process in rechargeable batteries

Siqi LYU1(), Na LI1, Haosen CHEN1, Shuqiang JIAO1,2, Weili SONG1()   

  1. 1.Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
    2.State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-12-28 Revised:2022-01-18 Online:2022-03-05 Published:2022-03-11
  • Contact: Weili SONG E-mail:siqi_Lv@163.com;weilis@bit.edu.cn

摘要:

2020年12月中央经济工作会议提出“碳达峰”与“碳中和”目标,明确了加快调整优化产业结构与能源结构,对发展新能源电池技术提出了新要求。在电池服役过程中,电极过程反映了电化学系统中的工作机制与演化规律,随着高比能电池体系的开发应用以及单体电池体积的增大,电池电极过程的不均匀程度更加突出。然而,电池在空间与时间维度上存在多尺度、多层级、多过程、多步骤及多场耦合的复杂特点。本综述重点整理了不同活性离子体系电池的电极过程,包括液相传质、表面电子转移、固相扩散三个主要步骤,并以高比能电池、功率型电池、长寿命电池为例,分析了电位、过电位、扩散系数、不同尺度的几何参数等对各种电池设计目标的影响,讨论了不同尺度下电极过程的非均匀对电池性能衰减的影响机制。基于已开发的电极过程可视化方法与定量化分析技术,系统总结了锂离子电池与铝电池的典型电极过程,深入分析了这两类电池电极过程的差异,为基于理解电极过程设计材料体系与优化电池结构提供了重要支撑。通过建立电极过程与电池性能之间的关系,分析并展望了存在的科学问题与技术问题,为科学指导电池设计与制造提供基础。

关键词: 二次电池, 电极过程, 多尺度, 原位表征技术

Abstract:

In China, the goals of "peak carbon dioxide emissions" and "carbon neutrality" were proposed in December 2020. As a result, industrial and energy structures must be optimized and improved battery technology, developed. The electrode could represent the working mechanism and the corresponding evolution of electrochemical systems during battery operation. The inhomogeneity of the electrode process in a single battery becomes increasingly obvious as the energy density and size of batteries rise. However, in terms of space and time, the challenges apply to multi-scale, multi-level, multi-process, multi-step, and multi-field coupling issues in electrochemical batteries. In this review, we will focus on the electrode process of batteries with different active ions as well as related processes such as liquid mass transfer, surface charge electron transfer, and solid phase diffusion. The influences of voltage, overpotential, diffusion coefficient, and geometric parameters on battery design have been analyzed in typical examples of high energy-density batteries, high-power-density batteries, and long-life cycle batteries. Furthermore, the impact of the electrode process inhomogeneity mechanism on battery performance has been discussed. We examine the electrode processes of lithium-ion batteries and Al batteries using various types of in-situ characterization technologies from different manufacturers based on visualization and quantitative analysis. The findings may be used to better understand the electrode process, which can help with material design and structure optimization. The existing scientific and technical challenges are also analyzed by establishing the relationship between the electrode process and battery performance. Existing scientific and technical issues are also analyzed, promising a platform for rational design and manufacture of high-performance batteries.

Key words: secondary battery, kinetic process, multiscale, in situ characterization technique

中图分类号: