1 |
何雅玲, 杜保存, 王坤, 等. 太阳能腔式熔盐吸热器随时空变化的光-热-力耦合一体化方法、机理分析及其失效准则研究[J]. 科学通报, 2017, 62(36): 4308-4321.
|
|
HE Y L, DU B C, WANG K, et al. Study on the coupled photon-thermal-stress integration method, characteristics with time and failure criterion in the solar molten salt cavity receiver[J]. Chinese Science Bulletin, 2017, 62(36): 4308-4321.
|
2 |
汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610.
|
|
WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: A critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610.
|
3 |
GAUTAM A, SAINI R P. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956.
|
4 |
Libby C. Solar thermocline storage systems: Preliminary design study[R]. Palo Alto, CA: Electric Power Research Institute, 2010.
|
5 |
PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 153-159.
|
6 |
尹辉斌, 丁静, 杨晓西. 高温熔融盐斜温层单罐蓄热的热过程特性[J]. 中国电机工程学报, 2013, 33(26): 68-74, 1.
|
|
YIN H B, DING J, YANG X X. Thermal characteristics of the high-temperature molten-salt heat storage process with a thermocline in single tank[J]. Proceedings of the CSEE, 2013, 33(26): 68-74, 1.
|
7 |
XU C, WANG Z F, HE Y L, et al. Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system[J]. Applied Energy, 2012, 92: 65-75.
|
8 |
LI M J, QIU Y, LI M J. Cyclic thermal performance analysis of a traditional single-layered and of a novel multi-layered packed-bed molten salt thermocline tank[J]. Renewable Energy, 2018, 118: 565-578.
|
9 |
ZHAO B C, CHENG M S, LIU C, et al. Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants[J]. Applied Energy, 2016, 178: 784-799.
|
10 |
FLUECKIGER S, YANG Z, GARIMELLA S V. An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J]. Applied Energy, 2011, 88(6): 2098-2105.
|
11 |
WANG G, YU S Y, NIU S Q, et al. A comprehensive parametric study on integrated thermal and mechanical performances of molten-salt-based thermocline tank[J]. Applied Thermal Engineering, 2020, 170: 115010.
|
12 |
张晓明, 吴玉庭, 张灿灿. 大型熔盐罐结构设计、温度分布与强度分析[J]. 北京工业大学学报, 2021, 47(9): 1064-1073.
|
|
ZHANG X M, WU Y T, ZHANG C C. Temperature distribution and strength analysis of large-scale molten salt thermal storage tank[J]. Journal of Beijing University of Technology, 2021, 47(9): 1064-1073.
|
13 |
WAN Z J, WEI J J, QAISRANI M A, et al. Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J]. Applied Thermal Engineering, 2020, 167: 114775.
|
14 |
Petroleum Standardization Research Institute. Welded tanks for oil storage: API Std 650 [S]. Washington: American Petroleum Institute, 2013.
|
15 |
国家市场监督管理总局, 国家标准化管理委员会. 压力管道规范 工业管道 第2部分:材料: GB/T 20801.2—2020[S]. 北京: 中国标准出版社, 2020.
|
|
Standardization Administration of the People's Republic of China. Pressure piping code—Industrial piping—Part 2: Materials: GB/T 20801.2—2020[S]. Beijing: Standards Press of China, 2020.
|
16 |
ASME Boiler and Pressure Vessel Committee on Nuclear Power. ASME Boiler and pressure vessel code Ⅱ. Materials Part D Properties (Metric)[S]. New York: The American Society of Mechanical Engineers, 2013.
|
17 |
吴家龙. 弹性力学[M]. 北京: 高等教育出版社, 2001.
|
|
WU J L. Elasticity[M]. Beijing: Higher Education Press, 2001.
|
18 |
姚仰平. 土力学[M]. 2版. 北京: 高等教育出版社, 2011.
|